This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

Related tags

Deep LearningSIMAT
Overview

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger Schwenk, Matthijs Douze, Matthieu Cord)

The inspiration for this work are the geometric properties of word embeddings, such as Queen ~ Woman + (King - Man). We extend this idea to multimodal embedding spaces (like CLIP), which let us semantically edit images via "delta vectors".

Transformed images can then be retrieved in a dataset of images.

The SIMAT Dataset

We build SIMAT, a dataset to evaluate the task of text-driven image transformation, for simple images that can be characterized by a single subject-relation-object annotation. A transformation query is a pair (image, query) where the query asks to change the subject, the relation or the object in the input image. SIMAT contains ~6k images and an average of 3 transformation queries per image.

The goal is to retrieve an image in the dataset that corresponds to the query specifications. We use OSCAR as an oracle to check whether retrieved images are correct with respect to the expected modifications.

Examples

Below are a few examples that are in the dataset, and images that were retrieved for our best-performing algorithm.

Download dataset

The SIMAT database is composed of crops of images from Visual Genome. You first need to install Visual Genome and then run the following command :

python prepare_dataset.py --VG_PATH=/path/to/visual/genome

Perform inference with CLIP ViT-B/32

In this example, we use the CLIP ViT-B/32 model to edit an image. Note that the dataset of clip embeddings is pre-computed.

import clip
from torchvision import datasets
from PIL import Image
from IPython.display import display

#hack to normalize tensors easily
torch.Tensor.normalize = lambda x:x/x.norm(dim=-1, keepdim=True)

# database to perform the retrieval step
dataset = datasets.ImageFolder('simat_db/images/')
db = torch.load('data/clip_simat.pt').float()

model, prep = clip.load('ViT-B/32', device='cuda:0', jit=False)

image = Image.open('simat_db/images/A cat sitting on a grass/98316.jpg')
img_enc = model.encode_image(prep(image).unsqueeze(0).to('cuda:0')).float().cpu().detach().normalize()

txt = ['cat', 'dog']
txt_enc = model.encode_text(clip.tokenize(txt).to('cuda:0')).float().cpu().detach().normalize()

# optionally, we can apply a linear layer on top of the embeddings
heads = torch.load(f'data/head_clip_t=0.1.pt')
img_enc = heads['img_head'](img_enc).normalize()
txt_enc = heads['txt_head'](txt_enc).normalize()
db = heads['img_head'](db).normalize()


# now we perform the transformation step
lbd = 1
target_enc = img_enc + lbd * (txt_enc[1] - txt_enc[0])


retrieved_idx = (db @ target_enc.float().T).argmax(0).item()


display(dataset[retrieved_idx][0])

Compute SIMAT scores with CLIP

You can run the evaluation script with the following command:

python eval.py --backbone clip --domain dev --tau 0.01 --lbd 1 2

It automatically load the adaptation layer relative to the value of tau.

Train adaptation layers on COCO

In this part, you can train linear layers after the CLIP encoder on the COCO dataset, to get a better alignment. Here is an example :

python adaptation.py --backbone ViT-B/32 --lr 0.001 --tau 0.1 --batch_size 512

Citation

If you find this paper or dataset useful for your research, please use the following.

@article{gco1embedding,
  title={Embedding Arithmetic for text-driven Image Transformation},
  author={Guillaume Couairon, Matthieu Cord, Matthijs Douze, Holger Schwenk},
  journal={arXiv preprint arXiv:2112.03162},
  year={2021}
}

References

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision, OpenAI 2021

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Fei-Fei Li. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations, IJCV 2017

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, Yejin Choi, Jianfeng Gao, Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, ECCV 2020

License

The SIMAT is released under the MIT license. See LICENSE for details.

Owner
Meta Research
Meta Research
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023