Deploy pytorch classification model using Flask and Streamlit

Overview

Tomato Disease Classification Model Deploy




1. Streamlit이란?

  • 데모 형식으로 웹을 만들 수 있는 프레임워크
  • 단점 : Interactive (파라미터, input shape, batch size 등 사용자가 화면에서 선택 할 경우) 한 동작이 발생 할 경우 새로 고침이 됨 -> form과 submit 이용해야 함



2. How to run

1-1) 플라스크 API 서버 (모델 서빙) : python flask_server.py
  • 터미널을 열어 플라스크 API 서버 (모델 서빙)을 먼저 실행 합니다.
1-2) (Option) 플라스크 API 서버 (모델 서빙) 테스트 : python flask_test.py
  • '필요 시' 터미널을 열어 플라스크 API 서버 (모델 서빙)을 테스트 합니다.
2-1) Streamlit : streamlit run streamlit.py
  • 터미널을 열어 Stremlit으로 개발 된 데모 웹 페이지를 실행 합니다.
2-2) 사용자는 http://127.0.0.1:5000/으로 웹 페이지에 접근 가능 합니다.



3. DIR 구조 설명

  • inference/ : 인퍼런스가 진행 되는 로직입니다. (학습 된 모델을 폴더 구조에 넣어 두고 > 모델을 미리 정의 해 둔 틀에 끼워서 로드 한 후 > 정규화 해서 > 요청이 들어 올 때 마다 결과 출력 하여 반환)
  • inference_image/ : 인퍼런스 할 이미지를 담는 곳입니다. (테스트 용)
  • model/ : 학습 된 모델 '틀'을 담는 곳입니다.
  • trained_model/ : 학습 된 모델을 담는 곳입니다.
  • flask_server.py : 플라스크 API 서버 (모델 서빙) 실행 파일
  • flask_test.py : 플라스크 API 서버 (모델 서빙) 테스트 파일
  • requirements.txt : 필요 라이브러리 설치
  • streamlit.py : 스트림릿 데모 웹 페이지



4. 프로젝트 진행 순서

1) 토마토 잎 분류 best 모델 저장
2) 플라스크 API 서버 (모델 서빙) 개발
3) 플라스크 API 서버 (모델 서빙) 테스트
4) 스트림릿 데모 웹 페이지 개발



5. 아키텍쳐 설명

1) 인퍼런스 로직 (PyTorch)
  • 학습 된 모델 로드 (나의 best 모델을 로컬 특정 폴더에 위치 시키기!)
  • 인풋 이미지 정규화
  • Request 발생 시 인퍼런스 결과 반환

2) 모델 서빙 (Flask)
  • Request 이미지 파일
  • 인퍼런스 로직 적용
  • 요청이 들어 올 때 마다 인퍼런스 결과 반환

3) 웹 페이지 (Streamlit)
  • 사용자가 이미지 업로드
  • 플라스크 API 서버로 이미지 request
  • 인퍼런스 진행 된 response 결과 파싱
  • Streamlit 화면에 뿌림



6. 기타

  • 여러 데이터를 한 번에 인퍼런스 할 경우 고려하기
  • 인퍼런스가 돌 때 추가 호출이 올 경우 고려하기
  • 배치성, 실시간성, 큐에 넣고 한 번에 동작 등 여러 시나리오 고려 하기
Owner
Ben Seo
데린이
Ben Seo
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023