Moon-patrol - A faithful recreation of the 1983 hit classic Moon Patrol for the Atari 2600 created using the Pygame library for Python

Overview

Moon Patrol

A recreation of the hit Atari 2600 game, Moon Patrol

Moon Patrol is made with the PyGame library in Python and has the following features:

  • Endless Generation
    • Never Stops
    • Completely Random Generation
  • Obstacles
    • White, Orange, and Purple aliens (all features included!)
    • Rocks
    • Holes
  • Asthetic Choices
    • Scrolling background complete with stars and mountains
    • All Character and Death Animations
  • Extra Additions
    • A max of 50 ammo which runs out as you shoot
    • Ammo crates spawn randomly
    • Lives can be earned by reaching 10000 points
  • Tanks and mines are not added because objects are spawned randomly on the ground and would create too many enemies

Requirements

  • A computer with python3.8 or higher installed
  • The pygame library (can be achieved by typing pip install pygame into terminal/cmd prompt)

Install

To install, follow the instructions below.

  • Download this Github Repository.
  • Open a terminal/cmd prompt window and cd to the folder you put this game in
  • Open the settings.toml file and set the value to your screen size. For example, on 1080p displays, set it to [1920, 1080]
  • Values like whether or not you want to play in fullscreen can also be changed.
  • Run the command python main.py to run the main script.

Note: if this running the main script fails, try reinstalling pygame with the requirements above or running python3 main.py instead.

Controls

On the menu, press the down arrow to select the button below, or the up arrow to select the button above. Then, press space to press the button. To get out of a certain part of the menu or the game itself, press the escape key.

Inside the game, press the left and right arrows to move forwards and backwards. You can also press the up arrow to jump. To shoot, press the space bar.

Modifications

Want to change certain aspects this game? No problem!

If you want to change a constant (Like gravity, or how fast you move), this repository makes it incredibly easy to do so!

Instructions:

  • Open the code folder.
  • Then, open the modules folder and open the constants.py file with python idle or a different text editor.
  • You can then change the values next to variable names and these changes will show up in the game.

It is also possible to change an asset, like a texture, animation, sound, text, or even a font.

Instructions:

  • Open the content folder and then find an asset inside any of the folders contained in it.
  • Find the asset you want to replace or edit and place it in the folder you found it in with the same file name.

Note: Some texture changes may require changing the constants file accordingly depending on what it is.

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022