Arabic speech recognition, classification and text-to-speech.

Overview

klaam

Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows training and prediction using pretrained models.

Usage

from klaam import SpeechClassification
model = SpeechClassification()
model.classify(wav_file)

from klaam import SpeechRecognition
model = SpeechRecognition()
model.transcribe(wav_file)

from klaam import TextToSpeech
model = TextToSpeech()
model.synthesize(sample_text)

There are two avilable models for recognition trageting MSA and egyptian dialect . You can set any of them using the lang attribute

 from klaam import SpeechRecognition
 model = SpeechRecognition(lang = 'msa')
 model.transcribe('file.wav')

Datasets

Dataset Description link
MGB-3 Egyptian Arabic Speech recognition in the wild. Every sentence was annotated by four annotators. More than 15 hours have been collected from YouTube. requires registeration here
ADI-5 More than 50 hours collected from Aljazeera TV. 4 regional dialectal: Egyptian (EGY), Levantine (LAV), Gulf (GLF), North African (NOR), and Modern Standard Arabic (MSA). This dataset is a part of the MGB-3 challenge. requires registeration here
Common voice Multlilingual dataset avilable on huggingface here.
Arabic Speech Corpus Arabic dataset with alignment and transcriptions here.

Models

We currently support four models, three of them are avilable on transformers.

Language Description Source
Egyptian Speech recognition wav2vec2-large-xlsr-53-arabic-egyptian
Standard Arabic Speech recognition wav2vec2-large-xlsr-53-arabic
EGY, NOR, LAV, GLF, MSA Speech classification wav2vec2-large-xlsr-dialect-classification
Standard Arabic Text-to-Speech fastspeech2

Example Notebooks

Name Description Notebook
Demo Classification, Recongition and Text-to-speech in a few lines of code.
Demo with mic Audio Recongition and classification with recording.

Training

The scripts are a modification of jqueguiner/wav2vec2-sprint.

classification

This script is used for the classification task on the 5 classes.

python run_classifier.py \
   --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
   --output_dir=/path/to/output \
   --cache_dir=/path/to/cache/ \
   --freeze_feature_extractor \
   --num_train_epochs="50" \
   --per_device_train_batch_size="32" \
   --preprocessing_num_workers="1" \
   --learning_rate="3e-5" \
   --warmup_steps="20" \
   --evaluation_strategy="steps"\
   --save_steps="100" \
   --eval_steps="100" \
   --save_total_limit="1" \
   --logging_steps="100" \
   --do_eval \
   --do_train \

Recognition

This script is for training on the dataset for pretraining on the egyption dialects dataset.

python run_mgb3.py \
    --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
    --output_dir=/path/to/output \
    --cache_dir=/path/to/cache/ \
    --freeze_feature_extractor \
    --num_train_epochs="50" \
    --per_device_train_batch_size="32" \
    --preprocessing_num_workers="1" \
    --learning_rate="3e-5" \
    --warmup_steps="20" \
    --evaluation_strategy="steps"\
    --save_steps="100" \
    --eval_steps="100" \
    --save_total_limit="1" \
    --logging_steps="100" \
    --do_eval \
    --do_train \

This script can be used for Arabic common voice training

python run_common_voice.py \
    --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
    --dataset_config_name="ar" \
    --output_dir=/path/to/output/ \
    --cache_dir=/path/to/cache \
    --overwrite_output_dir \
    --num_train_epochs="1" \
    --per_device_train_batch_size="32" \
    --per_device_eval_batch_size="32" \
    --evaluation_strategy="steps" \
    --learning_rate="3e-4" \
    --warmup_steps="500" \
    --fp16 \
    --freeze_feature_extractor \
    --save_steps="10" \
    --eval_steps="10" \
    --save_total_limit="1" \
    --logging_steps="10" \
    --group_by_length \
    --feat_proj_dropout="0.0" \
    --layerdrop="0.1" \
    --gradient_checkpointing \
    --do_train --do_eval \
    --max_train_samples 100 --max_val_samples 100

Text To Speech

We use the pytorch implementation of fastspeech2 by ming024. The procedure is as follows

Download the dataset

wget http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip 
unzip arabic-speech-corpus.zip 

Create multiple directories for data

mkdir -p raw_data/Arabic/Arabic preprocessed_data/Arabic/TextGrid/Arabic
cp arabic-speech-corpus/textgrid/* preprocessed_data/Arabic/TextGrid/Arabic

Prepare metadata

import os 
base_dir = '/content/arabic-speech-corpus'
lines = []
for lab_file in os.listdir(f'{base_dir}/lab'):
  lines.append(lab_file[:-4]+'|'+open(f'{base_dir}/lab/{lab_file}', 'r').read())


open(f'{base_dir}/metadata.csv', 'w').write(('\n').join(lines))

Clone my fork

git clone --depth 1 https://github.com/zaidalyafeai/FastSpeech2
cd FastSpeech2
pip install -r requirements.txt

Prepare alignments and prepreocessed data

python3 prepare_align.py config/Arabic/preprocess.yaml
python3 preprocess.py config/Arabic/preprocess.yaml

Unzip vocoders

unzip hifigan/generator_LJSpeech.pth.tar.zip -d hifigan
unzip hifigan/generator_universal.pth.tar.zip -d hifigan

Start training

python3 train.py -p config/Arabic/preprocess.yaml -m config/Arabic/model.yaml -t config/Arabic/train.yaml
Owner
ARBML
Arabic NLP
ARBML
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022