Labelling platform for text using distant supervision

Overview

Welcome to the DataQA platform

With DataQA, you can label unstructured text documents using rule-based distant supervision. You can use it to:

  • manually label all documents,
  • use a search engine to explore your data and label at the same time,
  • label a sample of some documents with an imbalanced class distribution,
  • create a baseline high-precision system for NER or for classification.

Documentation at: https://dataqa.ai/docs/.

Screenshots

Classify or extract named entities from your text:

Search and label your data:

Use rules & heuristics to automatically label your documents:

Installation

Pre-requisites:

  • Python 3.6, 3.7, 3.8 and 3.9
  • (Recommended) start a new python virtual environment
  • Update your pip pip install -U pip
  • Tested on backend: MacOSX, Ubuntu. Tested on browser: Chrome.

Installation

To install the package from pypi:

Python versions 3.6, 3.7

  • pip install dataqa

Python versions 3.8, 3.9

  • When using python 3.8 or 3.9, need to run pip install networkx==2.5 after installing dataqa (ignore error message complaining about snorkel's dependencies). This is due to an error in snorkel's dependencies.

Usage

Start the application

In the terminal, type dataqa run. Wait a few minutes initially, as it takes some minutes to start everything up.

Doing this will run a server locally and open a browser window at port 5000. If the application does not open the browser automatically, open localhost:5000 in your browser. You need to keep the terminal open.

To quit the application, simply do Ctr-C in the terminal. To resume the application, type dataqa run. Doing so will create a folder at $HOME/.dataqa_data.

Does this tool need an internet connection?

Only the first time you run it, it will need to download a language model from the internet. This is the only time it will need an internet connection. There is ongoing work to remove this constraint, so it can be run locally without any internet.

No data will ever leave your local machine.

Uploading data

The text file needs to be a csv file in utf-8 encoding of up to 30MB with a column named "text" which contains the main text. The other columns will be ignored.

This step is running some analysis on your text and might take up to 5 minutes.

Uninstall

In the terminal:

  • dataqa uninstall: this deletes your local application data in the home directory in the folder .dataqa_data. It will prompt the user before deleting.
  • pip uninstall dataqa

Troubleshooting

Usage

If the project data does not load, try to go to the homepage and http://localhost:5000 and navigate to the project from there.

Try running dataqa test to get more information about the error, and bug reports are very welcome!

Development

To test the application, it is possible to upload a text that contains a column "__LABEL__". The ground-truth labels will then be displayed during labelling and the real performance will be shown in the performance table between brackets.

Packaging

Using setuptools

To create the wheel file:

  • Make sure there are no stale files: rm -rf src/dataqa.egg-info; rm -rf build/;
  • python setup.py sdist bdist_wheel

Contact

For any feedback, please contact us at [email protected].

Owner
Democratising finding insights from unstructured data.
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022