Official Code for "Non-deep Networks"

Overview

Non-deep Networks
arXiv:2110.07641
Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun

Overview: Depth is the hallmark of DNNs. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing ``non-deep" neural networks? We show that it is. We show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO.

If you find our work useful, please consider citing it:

@article{goyal2021nondeep,
  title={Non-deep Networks},
  author={Goyal, Ankit and Bochkovskiy, Alexey and Deng, Jia and Koltun, Vladlen},
  journal={arXiv:2110.07641},
  year={2021}
}

Code Coming Soon!

Comments
  • when will the code of the model be released?

    when will the code of the model be released?

    I am very interested in your research, when will the code of the model be released? I saw on October 23rd that you said it would be released in 4 weeks

    opened by Dr-Goopher 6
  • When will the code be released?

    When will the code be released?

    I am very interested in your work and would like to further study. I hope you can release the code as soon as possible in your busy schedule. Thank you!

    opened by SenShu96 5
  • what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    Hello. Thank you for your great study. I wonder the meaning of 'Shuffle' of fusion block in Fig. A1. Is it pixel shuffle layer? Please let me know the meaning of that.

    Thank you.

    opened by jhcha08 3
  • Question about SSE module

    Question about SSE module

    Hi. Figure 2b shows that there's one 1x1conv in a branch of SSE, how to match the channel of output by 1x1conv with the channel of input after shortcut? If I set the output channel of 1x1conv the same as input, the channels of the outputs by RepVGG block and SSE will not match.

    opened by Tsianmy 2
  • Really faster than ResNet? I am very confused

    Really faster than ResNet? I am very confused

    Hello, my friend, appreciate for your great work! I have tested the code on https://github.com/Pritam-N/ParNet by Pritam-N and change the ResNet code in my model by using your ParNet , but the actual time is quite slow than the paper said. My block size is [64, 128, 256, 512, 2048], and the time of "forward()" is more than 5s average while the Resnet is 0.02s in my device. I have use the time function for every line in the forward(), find that the encode stuff is the main reason. I continue write time.perf_counter() in the encode stuff, find that the "self.stream2_fusion" and "self.stream3_fusion" is the most time user. Do you know why ?

    opened by StonepageVan 1
  •  fusion module, accuracy about cifar100

    fusion module, accuracy about cifar100

    1. what is your shuffle code in your fusion module?
    2. what is your model architecture in cifar-100? I just changed front two downsample modules based on the ParNet for Imagenet in the paper. But the accuracy is lower. And How do you set the LR, MILESTONES and NUM_EPOCH to meet high accuracy?
    opened by qq769852576 2
Owner
Ankit Goyal
Phd Candidate @Princeton | Works in CV and AI
Ankit Goyal
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022