T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

Overview

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

The first Lidar-only odometry framework with high performance based on truncated least squares and Open3D point cloud library, The foremost improvement include:

  • Fast and precision pretreatment module, multi-region ground extraction and dynamic curved-voxel clustering perform ground point extraction and category segmentation.
  • Feature extraction based on principal component analysis(PCA) elaborate four distinctive feature,including: planar features, ground features, edge features, sphere features
  • There are three kinds of residual functions based on truncated least squares method for directly processing above features which are point-to-point, point-to-line, and point-to-plane.
  • Open3d point cloud library is integrated into SLAM algorithm framework for the first time. We extend more functions and implemented the message interface related to ROS.

[Demo Video] [Preprint Paper]

drawing

drawing drawing drawing drawing

Note that regard to pure odometry without corrections through loop closures, T-LOAM delivers much less drift than F-LOAM.

Framework overview

drawing

Each frame of the 3D LiDAR is processed as input. Four main processing modules are introduced to construct the backbone of the algorithm: (a) multi-region ground extraction module, (b) dynamic curved-voxel clustering module, (c) feature extraction module, (d) pose optimization module.

Evaluation

KITTI Sequence 00 F-LOAM T-LOAM
Translational Error(%) 1.11 0.98
Relative Error(°/100m) 0.40 0.60

Graphic Result(Path and Translation)

F-LOAM

drawing

T-LOAM

drawing

F-LOAM

drawing

T-LOAM

drawing

Dependency

-ROS(Melodic Ubuntu18.04)

sudo apt-get install python-catkin-tools ros-melodic-ecl-threads ros-melodic-jsk-recognition-msgs ros-melodic-jsk-visualization ros-melodic-velodyne-msgs

-YAML(0.6.3) Note that you must build a shared library due to we utilize the ros nodelet package.

tar -zxvf yaml-cpp-yaml-cpp-0.6.3.tar.gz
cd yaml-2.3.0 && mkdir build && cd build
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=ON] ..
make 
sudo make install

-Open3D(A Modern Library for 3D Data Processing 0.12.0)

Please note that open3d installation will be a slightly troublesome process, please be patient. Another problem that needs attention is that Open3D-ML cannot be used in ROS at the same time due to the link error2286 and error3432. In order to fix this, you need to specify the cmake flag -DGLIBCXX_USE_CXX11_ABI=ON. However, the latest Tensorflow2.4 installed through conda(not pip) already supports the C++11 API, you can check the API with print(tensorflow.__cxx11_abi_flag__). If the flag is true, you can set the compile flag -DBUILD_TENSORFLOW_OPS=ON Next, you can complete the installation according to the instructions

cd Open3D
util/scripts/install-deps-ubuntu.sh
mkdir build && cd build 
cmake \
    -DBUILD_SHARED_LIBS=ON \
    -DPYTHON_EXECUTABLE=$(which python3) \
    -DBUILD_CUDA_MODULE=ON \
    -DGLIBCXX_USE_CXX11_ABI=ON \
    -DBUILD_LIBREALSENSE=ON  \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=/usr/local \
    -DBUILD_PYTORCH_OPS=OFF \
    -DBUILD_TENSORFLOW_OPS=OFF \
    -DBUNDLE_OPEN3D_ML=ON \
    -DOPEN3D_ML_ROOT=${replace with own Open3D-ML path} \
    ../
make -j4
sudo make install 

If you have clone problems, you can download it directly from the link below.

Baidu Disk code: khy9 or Google Drive

-Ceres Solver(A large scale non-linear optimization library 2.0) you can complete the installation according to the guide

Installation

Now create the Catkin Environment:

mkdir -p ~/tloam_ws/src
cd ~/tloam_ws
catkin init
catkin config --merge-devel
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

And clone the project:

cd src
git clone https://github.com/zpw6106/tloam.git
catkin build

Usage

Download the KITTI Odometry Dataset (Graviti can provide faster download speed in China), then organize it according to the following structure, and modify the read path in the config/kitti/kitti_reader.yaml

drawing

-Example for running T-LOAM using the KITTI Dataset

roslaunch tloam tloam_kitti.launch

Contributors

Pengwei Zhou (Email: [email protected])

BibTex Citation

Thank you for citing our T-LOAM paper on IEEEif you use any of this code:

@ARTICLE{9446309,
  author={Zhou, Pengwei and Guo, Xuexun and Pei, Xiaofei and Chen, Ci},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time}, 
  year={2021},
  volume={},
  number={},
  pages={1-13},
  doi={10.1109/TGRS.2021.3083606}
  }

Credits

We hereby recommend reading A-LOAM ,floam and TEASER for reference and thank them for making their work public.

License

The source code is released under GPLv3 license.

I am constantly working on improving this code. For any technical issues or commercial use, please contact me([email protected]).

Owner
Pengwei Zhou
Lidar SLAM & Sensor Fusion
Pengwei Zhou
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023