Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

Overview

mtomo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. And, Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

1. Environment

  1. Docker 20.10.5, build 55c4c88

2. Model optimization environment to be built

  1. Ubuntu 20.04 x86_64
  2. CUDA 11.2
  3. cuDNN 8.1
  4. TensorFlow v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  5. tflite_runtime v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  6. edgetpu-compiler
  7. flatc 1.12.0
  8. TensorRT cuda11.1-trt7.2.3.4-ga-20210226
  9. PyTorch 1.8.1+cu112
  10. TorchVision 0.9.1+cu112
  11. TorchAudio 0.8.1
  12. OpenVINO 2021.3.394
  13. tensorflowjs
  14. coremltools
  15. onnx
  16. tf2onnx
  17. tensorflow-datasets
  18. openvino2tensorflow
  19. tflite2tensorflow
  20. onnxruntime
  21. onnx-simplifier
  22. MXNet
  23. gdown
  24. OpenCV 4.5.2-openvino
  25. Intel-Media-SDK
  26. Intel iHD GPU (iGPU) support

3. Usage

3-1. Docker Hub

https://hub.docker.com/repository/docker/pinto0309/mtomo/tags?page=1&ordering=last_updated

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    pinto0309/mtomo:ubuntu2004_tf2.5.0-rc1_torch1.8.1_openvino2021.3.394

3-2. Docker Build

$ git clone https://github.com/PINTO0309/mtomo.git && cd mtomo
$ docker build -t {IMAGE_NAME}:{TAG} .

3-3. Docker Run

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    {IMAGE_NAME}:{TAG}

4. Reference articles

  1. openvino2tensorflow
  2. tflite2tensorflow
  3. tensorflow-onnx (a.k.a tf2onnx)
  4. tensorflowjs
  5. coremltools
  6. OpenVINO
  7. onnx
  8. onnx-simplifier
  9. TensorFLow
  10. PyTorch
  11. flatbuffers (a.k.a flatc)
  12. TensorRT
  13. Intel-Media-SDK/MediaSDK - Running on GPU under docker
  14. Intel-Media-SDK/MediaSDK - Intel media stack on Ubuntu
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022