Deploy AutoML as a service using Flask

Overview

AutoML Service

Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving.

The framework implements a fully automated time series classification pipeline, automating both feature engineering and model selection and optimization using Python libraries, TPOT and tsfresh.

Check out the blog post for more info.

Resources:

  • TPOT– Automated feature preprocessing and model optimization tool
  • tsfresh– Automated time series feature engineering and selection
  • Flask– A web development microframework for Python

Architecture

The application exposes both model training and model predictions with a RESTful API. For model training, input data and labels are sent via POST request, a pipeline is trained, and model predictions are accessible via a prediction route.

Pipelines are stored to a unique key, and thus, live predictions can be made on the same data using different feature construction and modeling pipelines.

An automated pipeline for time-series classification.

The model training logic is exposed as a REST endpoint. Raw, labeled training data is uploaded via a POST request and an optimal model is developed.

Raw training data is uploaded via a POST request and a model prediction is returned.

Using the app

View the Jupyter Notebook for an example.

Deploying

# deploy locally
python automl_service.py
# deploy on cloud foundry
cf push

Usage

Train a pipeline:

train_url = 'http://0.0.0.0:8080/train_pipeline'
train_files = {'raw_data': open('data/data_train.json', 'rb'),
               'labels'  : open('data/label_train.json', 'rb'),
               'params'  : open('parameters/train_parameters_model2.yml', 'rb')}

# post request to train pipeline
r_train = requests.post(train_url, files=train_files)
result_df = json.loads(r_train.json())

returns:

{'featureEngParams': {'default_fc_parameters': "['median', 'minimum', 'standard_deviation', 
                                                 'sum_values', 'variance', 'maximum', 
                                                 'length', 'mean']",
                      'impute_function': 'impute',
                      ...},
 'mean_cv_accuracy': 0.865,
 'mean_cv_roc_auc': 0.932,
 'modelId': 1,
 'modelType': "Pipeline(steps=[('stackingestimator', StackingEstimator(estimator=LinearSVC(...))),
                               ('logisticregression', LogisticRegressionClassifier(solver='liblinear',...))])"
 'trainShape': [1647, 8],
 'trainTime': 1.953}

Serve pipeline predictions:

serve_url = 'http://0.0.0.0:8080/serve_prediction'
test_files = {'raw_data': open('data/data_test.json', 'rb'),
              'params' : open('parameters/test_parameters_model2.yml', 'rb')}

# post request to serve predictions from trained pipeline
r_test  = requests.post(serve_url, files=test_files)
result = pd.read_json(r_test.json()).set_index('id')
example_id prediction
1 0.853
2 0.991
3 0.060
4 0.995
5 0.003
... ...

View all trained models:

r = requests.get('http://0.0.0.0:8080/models')
pipelines = json.loads(r.json())
{'1':
    {'mean_cv_accuracy': 0.873,
     'modelType': "RandomForestClassifier(...),
     ...},
 '2':
    {'mean_cv_accuracy': 0.895,
     'modelType': "GradientBoostingClassifier(...),
     ...},
 '3':
    {'mean_cv_accuracy': 0.859,
     'modelType': "LogisticRegressionClassifier(...),
     ...},
...}

Running the tests

Supply a user argument for the host.

# use local app
py.test --host http://0.0.0.0:8080
# use cloud-deployed app
py.test --host http://ROUTE-HERE

Scaling the architecture

For production, I would suggest splitting training and serving into seperate applications, and incorporating a fascade API. Also it would be best to use a shared cache such as Redis or Pivotal Cloud Cache to allow other applications and multiple instances of the pipeline to access the trained model. Here is a potential architecture.

A scalable model training and model serving architecture.

Author

Chris Rawles

Owner
Chris Rawles
...
Chris Rawles
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022