Lexical Substitution Framework

Overview

LexSubGen

Lexical Substitution Framework

This repository contains the code to reproduce the results from the paper:

Arefyev Nikolay, Sheludko Boris, Podolskiy Alexander, Panchenko Alexander, "Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution", Proceedings of the 28th International Conference on Computational Linguistics, 2020

Installation

Clone LexSubGen repository from github.com.

git clone https://github.com/Samsung/LexSubGen
cd LexSubGen

Setup anaconda environment

  1. Download and install conda
  2. Create new conda environment
    conda create -n lexsubgen python=3.7.4
  3. Activate conda environment
    conda activate lexsubgen
  4. Install requirements
    pip install -r requirements.txt
  5. Download spacy resources and install context2vec and word_forms from github repositories
    ./init.sh

Setup Web Application

If you do not plan to use the Web Application, skip this section and go to the next!

  1. Download and install NodeJS and npm.
  2. Run script for install dependencies and create build files.
bash web_app_setup.sh

Install lexsubgen library

python setup.py install

Results

Results of the lexical substitution task are presented in the following table. To reproduce them, follow the instructions above to install the correct dependencies.

Model SemEval COINCO
GAP [email protected] [email protected] [email protected] GAP [email protected] [email protected] [email protected]
OOC 44.65 16.82 12.83 18.36 46.3 19.58 15.03 12.99
C2V 55.82 7.79 5.92 11.03 48.32 8.01 6.63 7.54
C2V+embs 53.39 28.01 21.72 33.52 50.73 29.64 24.0 21.97
ELMo 53.66 11.58 8.55 13.88 49.47 13.58 10.86 11.35
ELMo+embs 54.16 32.0 22.2 31.82 52.22 35.96 26.62 23.8
BERT 54.42 38.39 27.73 39.57 50.5 42.56 32.64 28.73
BERT+embs 53.87 41.64 30.59 43.88 50.85 46.05 35.63 31.67
RoBERTa 56.74 32.25 24.26 36.65 50.82 35.12 27.35 25.41
RoBERTa+embs 58.74 43.19 31.19 44.61 54.6 46.54 36.17 32.1
XLNet 59.12 31.75 22.83 34.95 53.39 38.16 28.58 26.47
XLNet+embs 59.62 49.53 34.9 47.51 55.63 51.5 39.92 35.12

Results reproduction

Here we list XLNet reproduction commands that correspond to the results presented in the table above. Reproduction commands for all models you can find in scripts/lexsub-all-models.sh Besides saving to the 'run-directory' all results are saved using mlflow. To check them you can run mlflow ui in LexSubGen directory and then open the web page in a browser.

Also you can use pytest to check the reproducibility. But it may take a long time:

pytest tests/results_reproduction
  • XLNet:

XLNet Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet'

XLNet CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet'

XLNet with embeddings similarity Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet_embs'

XLNet with embeddings similarity CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet_embs'

Word Sense Induction Results

Model SemEval 2013 SemEval 2010
AVG AVG
XLNet 33.4 52.1
XLNet+embs 37.3 54.1

To reproduce these results use 2.3.0 version of transformers and the following command:

bash scripts/wsi.sh

Web application

You could use command line interface to run Web application.

# Run main server
lexsubgen-app run --host HOST 
                  --port PORT 
                  [--model-configs CONFIGS] 
                  [--start-ids START-IDS] 
                  [--start-all] 
                  [--restore-session]

Example:

# Run server and serve models BERT and XLNet. 
# For BERT create server for serving model and substitute generator instantly (load resources in memory).
# For XLNet create only server.
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --model-configs '["my_cool_configs/bert.jsonnet", "my_awesome_configs/xlnet.jsonnet"]' 
                  --start-ids '[0]'

# After shutting down server JSON file with session dumps in the '~/.cache/lexsubgen/app_session.json'.
# The content of this file looks like:
# [
#     'my_cool_configs/bert.jsonnet',
#     'my_awesome_configs/xlnet.jsonnet',
# ]
# You can restore it with flag 'restore-session'
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --restore-session
# BERT and XLNet restored now
Arguments:
Argument Default Description
--help Show this help message and exit
--host IP address of running server host
--port 5000 Port for starting the server
--model-configs [] List of file paths to the model configs.
--start-ids [] Zero-based indices of served models for which substitute generators will be created
--start-all False Whether to create substitute generators for all served models
--restore-session False Whether to restore session from previous Web application run

FAQ

  1. How to use gpu? - You can use environment variable CUDA_VISIBLE_DEVICES to use gpu for inference: export CUDA_VISIBLE_DEVICES='1' or CUDA_VISIBLE_DEVICES='1' before your command.
  2. How to run tests? - You can use pytest: pytest tests
Owner
Samsung
Samsung Electronics Co.,Ltd.
Samsung
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022