This repository provides an efficient PyTorch-based library for training deep models.

Related tags

Deep LearningHammer
Overview

An Efficient Library for Training Deep Models

This repository provides an efficient PyTorch-based library for training deep models.

Installation

Make sure your Python >= 3.7, CUDA version >= 11.1, and CUDNN version >= 7.6.5.

  1. Install package requirements via conda:

    conda create -n <ENV_NAME> python=3.7  # create virtual environment with Python 3.7
    conda activate <ENV_NAME>
    pip install -r requirements/minimal.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
  2. To use video visualizer (optional), please also install ffmpeg.

    • Ubuntu: sudo apt-get install ffmpeg.
    • MacOS: brew install ffmpeg.
  3. To reduce memory footprint (optional), you can switch to either jemalloc (recommended) or tcmalloc rather than your default memory allocator.

    • jemalloc (recommended):
      • Ubuntu: sudo apt-get install libjemalloc
    • tcmalloc:
      • Ubuntu: sudo apt-get install google-perftools
  4. (optional) To speed up data loading on NVIDIA GPUs, you can install DALI, together with dill to pickle python objects. It is optional to also install CuPy for some customized operations if needed:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-<CUDA_VERSION>
    pip install dill
    pip install cupy  # optional, installation can be slow

    For example, on CUDA 11.1, DALI can be installed via:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110  # CUDA 11.1 compatible
    pip install dill
    pip install cupy  # optional, installation can be slow

Quick Demo

Train StyleGAN2 on FFHQ in Resolution of 256x256

In your Terminal, run:

./scripts/training_demos/stylegan2_ffhq256.sh <NUM_GPUS> <PATH_TO_DATA> [OPTIONS]

where

  • refers to the number of GPUs. Setting as 1 helps launch a training job on single-GPU platforms.

  • refers to the path of FFHQ dataset (in resolution of 256x256) with zip format. If running on local machines, a soft link of the data will be created under the data folder of the working directory to save disk space.

  • [OPTIONS] refers to any additional option to pass. Detailed instructions on available options can be shown via ./scripts/training_demos/stylegan2_ffhq256.sh --help .

This demo script uses stylegan2_ffhq256 as the default value of job_name, which is particularly used to identify experiments. Concretely, a directory with name job_name will be created under the root working directory (with is set as work_dirs/ by default). To prevent overwriting previous experiments, an exception will be raised to interrupt the training if the job_name directory has already existed. To change the job name, please use --job_name= option.

More Demos

Please find more training demos under ./scripts/training_demos/.

Inspect Training Results

Besides using TensorBoard to track the training process, the raw results (e.g., training losses and running time) are saved in JSON format. They can be easily inspected with the following script

import json

file_name = '
   
    /log.json'
   

data_entries = []
with open(file_name, 'r') as f:
    for line in f:
        data_entry = json.loads(line)
        data_entries.append(data_entry)

# An example of data entry
# {"Loss/D Fake": 0.4833524551040682, "Loss/D Real": 0.4966000154727226, "Loss/G": 1.1439273656869773, "Learning Rate/Discriminator": 0.002352941082790494, "Learning Rate/Generator": 0.0020000000949949026, "data time": 0.0036810599267482758, "iter time": 0.24490128830075264, "run time": 66108.140625}

Convert Pre-trained Models

See Model Conversion for details.

Prepare Datasets

See Dataset Preparation for details.

Develop

See Contributing Guide for details.

License

The project is under MIT License.

Acknowledgement

This repository originates from GenForce, with all modules carefully optimized to make it more flexible and robust for distributed training. On top of GenForce where only StyleGAN training is provided, this repository also supports training StyleGAN2 and StyleGAN3, both of which are fully reproduced. Any new method is welcome to merge into this repository! Please refer to the Develop section.

Contributors

The main contributors are listed as follows.

Member Contribution
Yujun Shen Refactor and optimize the entire codebase and reproduce start-of-the-art approaches.
Zhiyi Zhang Contribute to a number of sub-modules and functions, especially dataset related.
Dingdong Yang Contribute to DALI data loading acceleration.
Yinghao Xu Originally contribute to runner and loss functions in GenForce.
Ceyuan Yang Originally contribute to data loader in GenForce.
Jiapeng Zhu Originally contribute to evaluation metrics in GenForce.

BibTex

We open source this library to the community to facilitate the research. If you do like our work and use the codebase for your projects, please cite our work as follows.

@misc{hammer2022,
  title =        {Hammer: An Efficient Toolkit for Training Deep Models.},
  author =       {Shen, Yujun and Zhang, Zhiyi and Yang, Dingdong and Xu, Yinghao and Yang, Ceyuan and Zhu, Jiapeng},
  howpublished = {\url{https://github.com/bytedance/Hammer}},
  year =         {2022}
}
Owner
Bytedance Inc.
Bytedance Inc.
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022