TensorLight - A high-level framework for TensorFlow

Overview
TensorLight

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced features that are not yet provided out-of-the-box.

Setup

After cloning the repository, we can install the package locally (for use on our system), with:

$ cd /path/to/tensorlight
$ sudo pip install .

We can also install the package with a symlink, so that changes to the source files will be immediately available to other users of the package on our system:

$ sudo pip install -e .

Guiding Principles

The TensorLight framework is developed under its four core principles:

  • Simplicity: Straight-forward to use for anybody who has already worked with TensorFlow. Especially, no further learning is required regarding how to define a model's graph definition.
  • Compactness: Reduce boilerplate code, while keeping the transparency and flexibility of TensorFlow.
  • Standardization: Provide a standard way in respect to the implementation of models and datasets in order to save time. Further, it automates the whole training and validation process, but also provides hooks to maintain customizability.
  • Superiority: Enable advanced features that are not included in the TensorFlow API, as well as retain its full functionality.

Key Features

To highlight the advanced features of TensorLight, an incomplete list of some main functionalities is provided that are not shipped with TensorFlow by default, or might even be missing in other high-level APIs. These include:

  • Transparent lifecycle management of the session and graph definition.
  • Abstraction of models and datasets to provide a reusable plug-and-play support.
  • Effortless support to train a model symmetrically on multiple GPUs, as well as prevent TensorFlow to allocate memory on other GPU devices of the cluster.
  • Train or evaluate a model with a single line of code.
  • Abstracted, runtime-exchangeable input pipelines which either use the simple feeding mechanism with NumPy arrays, or even multi-threaded input queues.
  • Automatic saving and loading of hyperparameters as JSON to simplify the evaluation management of numerous trainings.
  • Ready-to-use loss functions and metrics, even with latest advances for perceptual motivated image similarity assessment.
  • Extended recurrent functions to enable scheduled sampling, as well as an implementation of a ConvLSTM cell.
  • Automatic creation of periodic checkpoints and TensorBoard summaries.
  • Ability to work with other higher-level libraries hand in hand, such as tf.contrib or TF-slim.

Architecture

From an architectural perspective, the framework can be split into three main components. First, a collection of utility function that are unrelated to machine learning. Examples are functions to download and extract datasets, to process images and videos, or to generate animated GIFs and videos from a data array, to name just a few. Second, the high-level library which builds on top of TensorFlow. It includes several modules that either provide a simple access to functionally that it repeatedly required when developing deep learning applications, or features that are not included in TensorFlow yet. For instance, it handles the creation of weight and bias variables internally, offers a bunch of ready-to-use loss and initialization functions, or comes with some advanced visualization features to display feature maps or output images directly in an IPython Notebook. Third, an abstraction layer to simplify the overall lifecycle, to generalize the definition of a model graphs, as well as to enable a reusable and consistent access to datasets.

TensorLight Architecture

The user program can either exploit the high-level library and the provided utility functions for his existing projects, or take advantage from TensorLight's abstraction layes while creating new deep learning applications. The latter enables to radically reduce the amount of code that has to be written for training or evaluating the model. This is realized by encapsulating the lifecycle of TensorFlow's session, graph, summary-writer or checkpoint-saver, as well as the entire training or evaluation loop within a runtime module.

Examples

You want to learn more? Check out the tutorial and code examples.

Owner
Benjamin Kan
Passionate coder with focus on machine learning, mobile apps and game development
Benjamin Kan
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022