Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Overview

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data.

This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》.

arch

Usage Instructions

  1. The code is adopted from InsightFace. I sincerely appreciate for their contributions.

  2. Our method need two stage training, therefore the code is also stepwise. I will be happy if my humble code would help you. If there are questions or issues, please let me know.

Note:

  1. Our method is appropriate for the noisy data with long-tailed distribution such as MF2 training dataset. When the training data is good, like MS1M and VGGFace2, InsightFace is more suitable.

  2. We use the last arcface model (best performance) to find the third type noise. Next we drop the fc weight of the last arcface model, then finetune from it using NR loss (adding a reweight term by putting more confidence in the prediction of the training model).

  3. The second stage training process need very careful manual tuning. We provide our training log for reference.

Prepare the code and the data.

  1. Install MXNet with GPU support (Python 2.7).
pip install mxnet-cu90
  1. download the code as unequal_code/
git clone https://github.com/zhongyy/Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data.git
  1. download the MF2 training dataset(password: w9y5) and the evaluation dataset, then place them in unequal_code/MF2_pic9_head/ unequal_code/MF2_pic9_tail/ and unequal_code/eval_dataset/ respectively.

step 1: Pretrain MF2_pic9_head with ArcFace.

End it when the acc of validation dataset (lfw,cfp-fp and agedb-30) does not ascend.

CUDA_VISIBLE_DEVICES='0,1' python -u train_softmax.py --network r50 --loss-type 4  --margin-m 0.5 --data-dir ./MF2_pic9_head/ --end-epoch 40 --per-batch-size 100 --prefix ../models/r50_arc_pic9/model 2>&1|tee r50_arc_pic9.log

step 2: Train the head data with NRA (finetune from step 1).

  1. Once the model_t,0 is saved, end it.
CUDA_VISIBLE_DEVICES='0,1' python -u train_NR_savemodel.py --network r50 --loss-type 4 --margin-m 0.5 --data-dir ./MF2_pic9_head/ --end-epoch 1 --lr 0.01  --per-batch-size 100 --noise-beta 0.9 --prefix ../models/NRA_r50pic9/model_t --bin-dir ./src/ --pretrained ../models/r50_arc_pic9/model,xx 2>&1|tee NRA_r50pic9_savemodel.log
  1. End it when the acc of validation dataset(lfw, cfp-fp and agedb-30) does not ascend.
CUDA_VISIBLE_DEVICES='0,1' python -u train_NR.py --network r50 --loss-type 4 --margin-m 0.5 --data-dir ./MF2_pic9_head/ --lr 0.01 --lr-steps 50000,90000 --per-batch-size 100 --noise-beta 0.9 --prefix ../models/NRA_r50pic9/model --bin-dir ./src/ --pretrained ../models/NRA_r50pic9/model_t,0 2>&1|tee NRA_r50pic9.log

step 3:

  1. Generate the denoised head data using ./MF2_pic9_head/train.lst and 0_noiselist.txt which has been generated in step 2. (We provide our denoised version(password: w9y5)

  2. Using the denoised head data (have removed the third type noise) and the tail data to continue the second stage training. It's noting that the training process need finetune manually by increase the --interweight gradually. When you change the interweight, you also need change the pretrained model by yourself, because we could not know which is the best model in the last training stage unless we test the model on the target dataset (MF2 test). We always finetune from the best model in the last training stage.

CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' python -u train_debug_soft_gs.py --network r50 --loss-type 4 --data-dir ./MF2_pic9_head_denoise/ --data-dir-interclass ./MF2_pic9_tail/ --end-epoch 100000 --lr 0.001 --interweight 1 --bag-size 3600 --batch-size1 360 --batchsize_id 360 --batch-size2 40  --pretrained /home/zhongyaoyao/insightface/models/NRA_r50pic9/model,xx --prefix ../models/model_all/model 2>&1|tee all_r50.log
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' python -u train_debug_soft_gs.py --network r50 --loss-type 4 --data-dir ./MF2_pic9_head_denoise/ --data-dir-interclass ./MF2_pic9_tail/ --end-epoch 100000 --lr 0.001 --interweight 5 --bag-size 3600 --batch-size1 360 --batchsize_id 360 --batch-size2 40  --pretrained ../models/model_all/model,xx --prefix ../models/model_all/model_s2 2>&1|tee all_r50_s2.log
Owner
Zhong Yaoyao
PhD student in BUPT
Zhong Yaoyao
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022