Robust Partial Matching for Person Search in the Wild

Related tags

Deep LearningAPNet
Overview

APNet for Person Search

Introduction

This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part Network(APNet) is proposed to alleviate the misalignment problem occurred in pedestrian detector, facilitating the downstream re-identification task. The code is based on maskrcnn-benchmark.

Quick start

Installation

  1. Please follow the offical installation INSTALL.md. This code does not support the mixed precision training, so feel free to skip the installation of apex.

NOTE: If you meet some problems during the installation, you may find a solution in issues of official maskrcnn-benchmark.

  1. Install APNet
git clone https://github.com/zhongyingji/APNet.git
cd APNet
rm -rf build/
python setup.py build develop

Dataset Preparation

Make sure you have downloaded the dataset of person search like PRW-v16.04.20.

  1. Since the training of APNet relies on the keypoint annotation, we provide the keypoint estimation file by AlphaPose in keypoint_pred/. Copy all the files into the root dir of dataset, like /path_to_prw_dataset/PRW-v16.04.20/:
cp keypoint_pred/* /path_to_prw_dataset/PRW-v16.04.20/
  1. Symlink the path to the dataset to datasets/ as follows:
ln -s /path_to_prw_dataset/PRW-v16.04.20/ maskrcnn_benchmark/datasets/PRW-v16.04.20

Training

APNet composes of three modules, OIM, RSFE and BBA. To train the entire network, you can simply run:

./train.sh

which contains the training scripts of the three modules.

NOTE: Both RSFE and BBA are required to be intialised with the trained OIM. For more details, please check train.sh.

You can alter the scripts in train.sh in the following aspects:

  1. We train OIM on 2 GPUS with batchsize 4. If you encounter out-of-memory (OOM) error, reduce the batchsize by setting SOLVER.IMS_PER_BATCH to a smaller number.

  2. If you want to use 1 GPU, replace the command of OIM with single GPU training script:

python tools/train_net.py --config-file "configs/reid/prw_R_50_C4.yaml" SOLVER.IMS_PER_BATCH 2 TEST.IMS_PER_BATCH 8 OUTPUT_DIR "models/prw_oim"

Test

After each of the module has been trained, you can run exactly the same training script of that module to test the performance.

Citation

If you find this work or code is helpful in your research, please consider citing:

Owner
Yingji Zhong
Yingji Zhong
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022