The Unsupervised Reinforcement Learning Benchmark (URLB)

Overview

The Unsupervised Reinforcement Learning Benchmark (URLB)

URLB provides a set of leading algorithms for unsupervised reinforcement learning where agents first pre-train without access to extrinsic rewards and then are finetuned to downstream tasks.

Requirements

We assume you have access to a GPU that can run CUDA 10.2 and CUDNN 8. Then, the simplest way to install all required dependencies is to create an anaconda environment by running

conda env create -f conda_env.yml

After the instalation ends you can activate your environment with

conda activate urlb

Implemented Agents

Agent Command Implementation Author(s) Paper
ICM agent=icm Denis paper
ProtoRL agent=proto Denis paper
DIAYN agent=diayn Misha paper
APT(ICM) agent=icm_apt Hao, Kimin paper
APT(Ind) agent=ind_apt Hao, Kimin paper
APS agent=aps Hao, Kimin paper
SMM agent=smm Albert paper
RND agent=rnd Kevin paper
Disagreement agent=disagreement Catherine paper

Available Domains

We support the following domains.

Domain Tasks
walker stand, walk, run, flip
quadruped walk, run, stand, jump
jaco reach_top_left, reach_top_right, reach_bottom_left, reach_bottom_right

Domain observation mode

Each domain supports two observation modes: states and pixels.

Model Command
states obs_type=states
pixels obs_type=pixels

Instructions

Pre-training

To run pre-training use the pretrain.py script

python pretrain.py agent=icm domain=walker

or, if you want to train a skill-based agent, like DIAYN, run:

python pretrain.py agent=diayn domain=walker

This script will produce several agent snapshots after training for 100k, 500k, 1M, and 2M frames. The snapshots will be stored under the following directory:

./pretrained_models/<obs_type>/<domain>/<agent>/

For example:

./pretrained_models/states/walker/icm/

Fine-tuning

Once you have pre-trained your method, you can use the saved snapshots to initialize the DDPG agent and fine-tune it on a downstream task. For example, let's say you have pre-trained ICM, you can fine-tune it on walker_run by running the following command:

python finetune.py pretrained_agent=icm task=walker_run snapshot_ts=1000000 obs_type=states

This will load a snapshot stored in ./pretrained_models/states/walker/icm/snapshot_1000000.pt, initialize DDPG with it (both the actor and critic), and start training on walker_run using the extrinsic reward of the task.

For methods that use skills, include the agent, and the reward_free tag to false.

python finetune.py pretrained_agent=smm task=walker_run snapshot_ts=1000000 obs_type=states agent=smm reward_free=false

Monitoring

Logs are stored in the exp_local folder. To launch tensorboard run:

tensorboard --logdir exp_local

The console output is also available in a form:

| train | F: 6000 | S: 3000 | E: 6 | L: 1000 | R: 5.5177 | FPS: 96.7586 | T: 0:00:42

a training entry decodes as

F  : total number of environment frames
S  : total number of agent steps
E  : total number of episodes
R  : episode return
FPS: training throughput (frames per second)
T  : total training time
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022