Fast Style Transfer in TensorFlow

Overview

Fast Style Transfer in TensorFlow

Add styles from famous paintings to any photo in a fraction of a second! You can even style videos!

It takes 100ms on a 2015 Titan X to style the MIT Stata Center (1024×680) like Udnie, by Francis Picabia.

Our implementation is based off of a combination of Gatys' A Neural Algorithm of Artistic Style, Johnson's Perceptual Losses for Real-Time Style Transfer and Super-Resolution, and Ulyanov's Instance Normalization.

Sponsorship

Please consider sponsoring my work on this project!

License

Copyright (c) 2016 Logan Engstrom. Contact me for commercial use (or rather any use that is not academic research) (email: engstrom at my university's domain dot edu). Free for research use, as long as proper attribution is given and this copyright notice is retained.

Video Stylization

Here we transformed every frame in a video, then combined the results. Click to go to the full demo on YouTube! The style here is Udnie, as above.

See how to generate these videos here!

Image Stylization

We added styles from various paintings to a photo of Chicago. Click on thumbnails to see full applied style images.



Implementation Details

Our implementation uses TensorFlow to train a fast style transfer network. We use roughly the same transformation network as described in Johnson, except that batch normalization is replaced with Ulyanov's instance normalization, and the scaling/offset of the output tanh layer is slightly different. We use a loss function close to the one described in Gatys, using VGG19 instead of VGG16 and typically using "shallower" layers than in Johnson's implementation (e.g. we use relu1_1 rather than relu1_2). Empirically, this results in larger scale style features in transformations.

Virtual Environment Setup (Anaconda) - Windows/Linux

Tested on

Spec
Operating System Windows 10 Home
GPU Nvidia GTX 2080 TI
CUDA Version 11.0
Driver Version 445.75

Step 1:Install Anaconda

https://docs.anaconda.com/anaconda/install/

Step 2:Build a virtual environment

Run the following commands in sequence in Anaconda Prompt:

conda create -n tf-gpu tensorflow-gpu=2.1.0
conda activate tf-gpu
conda install jupyterlab
jupyter lab

Run the following command in the notebook or just conda install the package:

!pip install moviepy==1.0.2

Follow the commands below to use fast-style-transfer

Documentation

Training Style Transfer Networks

Use style.py to train a new style transfer network. Run python style.py to view all the possible parameters. Training takes 4-6 hours on a Maxwell Titan X. More detailed documentation here. Before you run this, you should run setup.sh. Example usage:

python style.py --style path/to/style/img.jpg \
  --checkpoint-dir checkpoint/path \
  --test path/to/test/img.jpg \
  --test-dir path/to/test/dir \
  --content-weight 1.5e1 \
  --checkpoint-iterations 1000 \
  --batch-size 20

Evaluating Style Transfer Networks

Use evaluate.py to evaluate a style transfer network. Run python evaluate.py to view all the possible parameters. Evaluation takes 100 ms per frame (when batch size is 1) on a Maxwell Titan X. More detailed documentation here. Takes several seconds per frame on a CPU. Models for evaluation are located here. Example usage:

python evaluate.py --checkpoint path/to/style/model.ckpt \
  --in-path dir/of/test/imgs/ \
  --out-path dir/for/results/

Stylizing Video

Use transform_video.py to transfer style into a video. Run python transform_video.py to view all the possible parameters. Requires ffmpeg. More detailed documentation here. Example usage:

python transform_video.py --in-path path/to/input/vid.mp4 \
  --checkpoint path/to/style/model.ckpt \
  --out-path out/video.mp4 \
  --device /gpu:0 \
  --batch-size 4

Requirements

You will need the following to run the above:

  • TensorFlow 0.11.0
  • Python 2.7.9, Pillow 3.4.2, scipy 0.18.1, numpy 1.11.2
  • If you want to train (and don't want to wait for 4 months):
    • A decent GPU
    • All the required NVIDIA software to run TF on a GPU (cuda, etc)
  • ffmpeg 3.1.3 if you want to stylize video

Citation

  @misc{engstrom2016faststyletransfer,
    author = {Logan Engstrom},
    title = {Fast Style Transfer},
    year = {2016},
    howpublished = {\url{https://github.com/lengstrom/fast-style-transfer/}},
    note = {commit xxxxxxx}
  }
Owner
Jefferson
I'm a Python full stack developer who has deep experience in Web development, desktop app development, machine learning, data science.
Jefferson
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022