ML models and internal tensors 3D visualizer

Related tags

Deep Learningviewer
Overview

logo

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to open the AI black box by visualizing and understanding the model's architecture and internal data (feature maps, weights, biases and layers output tensors). It can be thought of as a tool to do neuroimaging or brain imaging for artificial neural networks and machine learning algorithms.

You can also launch your own Zetane workspace directly from your existing scripts or notebooks via a few commands using the Zetane Python API.

nodes tensors


Zetane Viewer

Installation

You can install the free Zetane viewer for Windows, Linux and Mac, and explore ZTN and ONNX files.

Download for Windows

Download for Linux

Download for Mac

Tutorial

In this video, we will show you how to load a Zetane or ONNX model, navigate the model and view different tensors:

Below is the step-by-step instruction of how to load and inspect a model in the Zetane viewer:

  • How to load a model

The viewer supports both .ONNX and .ZTN files. The ZTN files were generated from the Keras and Pytorch scripts shared in this Git repository. After launching the viewer, to load a Zetane model, simply click “Load Zetane Model” in the DATA I/O menu. To load an Onnx model, click on “Import ONNX Model” in the same menu. Below you can access the ZTN files for a few models to load. You can also access ONNX files from the ONNX Model Zoo.

loading

When a model is displayed in the Zetane engine, any components of the model can be accessed in a few clicks.

At the highest level, we have the model architecture which is composed of interconnected nodes and tensors. Each node represents an operator of the computational graph. Usually, an input tensor is passed to the model and as it goes through the nodes it will be transformed into intermediate tensors until we reach the output tensor of the model. In the Zetane engine, the data flows from left to right.

architecture

  • How to navigate

You may navigate the model viewer window by right clicking and dragging to explore the space and using the scroll wheel to zoom in and out. Here is the complete list of navigation instructions. You can change the behavior of the mouse wheel (either to zoom or to navigate) via the Mouse Zoom toggle in the top menu.

zoom

  • Loading custom model inputs

After loading a model you may want to send your own inputs to the model to inference. Zetane supports loading .npy, .npz, .png, .jpg, .pb (protobuf), .tiff, and .hdr files that match the input dimensions of the model. The Zetane engine will attempt to intelligently resize the file loaded (if possible) in order to send the data to the model. After loading and running the input, you will be able to explore in detail how your model interpreted the input data.

nodes tensors tensors

  • How to inspect different layers and feature maps

For each layer, you have the option to view all the feature maps and filters by clicking on the “Show Feature Maps” on each node. You may inspect the inputs and outputs and weights and biases using the tensor view bar.

featuremap

  • Tensor view bar

By clicking on the associated button, you can visualize inputs, outputs, weights and biases (if applicable) for each individual layer. You can also investigate the shape, type, mean and standard deviation of each tensor.

tensorview

Statistics about the tensor value and its distribution is given in the histogram in the top panel. You can also see the tensor name and shape. The tensor and its values is represented in the middle panel and the bottom section contains tensor visualization parameters and a refresh button which allow the user to refresh the tensor. This is useful when the input or the weights are changing in real-time.

tensorpanel

  • Styles of tensor visualization

Tensors can be inspected in different ways, including 3D view and 2D view with and without actual values.

tensorview2



Tensor View Screenshot
N-dimensional tensor projected in the 3D space tensor_viz_3d
N-dimensional tensor projected in the 2D space tensor_viz_2d
Tensor values and color representations of each value based on the gradient shown on the x-axis of the distribution histogram tensor_viz_color-values
Tensor values__ tensor_viz_values
Feature maps view when the tensor has shape of dimension 3 tensor_viz_values

Models

We have generated a few ZTN models for inspecting their architecture and internal tensors in the viewer. We have also provided the code used to generate these models.

Image Classification

Object Detection

Image Segmentation

Body, Face and Gesture Analysis

Image Manipulation

XAI

Classic Machine Learning


Installation

Install the Zetane Viewer here.


Comments
  • BUG: Viewer crashes when loading any model

    BUG: Viewer crashes when loading any model

    I've tried loading multiple models including emotion-ferplus (both onnx and ztn formats) but they always immediately crash the viewer.

    OS: Ubuntu 20.04 Zetane 1.3.2 Dump:

    LoadUniverse(): ZTN_REQUIRE_LOGIN = 1 
    online = 0 
    ================== ExposeIRnodes: ================== 
    @@@ ExposeIRnodes() n_IR_outputs = 51. 
     <- [Parameter1367_reshape1. 
     <- [Minus340_Output_0. 
     <- [Block352_Output_0. 
     <- [Convolution362_Output_0. 
     <- [Plus364_Output_0. 
     <- [ReLU366_Output_0. 
     <- [Convolution380_Output_0. 
     <- [Plus382_Output_0. 
     <- [ReLU384_Output_0. 
     <- [Pooling398_Output_0. 
     <- [Dropout408_Output_0. 
     <- [Convolution418_Output_0. 
     <- [Plus420_Output_0. 
     <- [ReLU422_Output_0. 
     <- [Convolution436_Output_0. 
     <- [Plus438_Output_0. 
     <- [ReLU440_Output_0. 
     <- [Pooling454_Output_0. 
     <- [Dropout464_Output_0. 
     <- [Convolution474_Output_0. 
     <- [Plus476_Output_0. 
     <- [ReLU478_Output_0. 
     <- [Convolution492_Output_0. 
     <- [Plus494_Output_0. 
     <- [ReLU496_Output_0. 
     <- [Convolution510_Output_0. 
     <- [Plus512_Output_0. 
     <- [ReLU514_Output_0. 
     <- [Pooling528_Output_0. 
     <- [Dropout538_Output_0. 
     <- [Convolution548_Output_0. 
     <- [Plus550_Output_0. 
     <- [ReLU552_Output_0. 
     <- [Convolution566_Output_0. 
     <- [Plus568_Output_0. 
     <- [ReLU570_Output_0. 
     <- [Convolution584_Output_0. 
     <- [Plus586_Output_0. 
     <- [ReLU588_Output_0. 
     <- [Pooling602_Output_0. 
     <- [Dropout612_Output_0. 
     <- [Dropout612_Output_0_reshape0. 
     <- [Times622_Output_0. 
     <- [Plus624_Output_0. 
     <- [ReLU636_Output_0. 
     <- [Dropout646_Output_0. 
     <- [Times656_Output_0. 
     <- [Plus658_Output_0. 
     <- [ReLU670_Output_0. 
     <- [Dropout680_Output_0. 
     <- [Times690_Output_0. 
    node_name = Node_0000000000_Times622_reshape1_Reshape. 
     -> [Parameter1367_reshape1. 
    node_name = Node_0000000001_Minus340_Sub. 
     -> [Minus340_Output_0. 
    node_name = Node_0000000002_Block352_Div. 
     -> [Block352_Output_0. 
    node_name = Node_0000000003_Convolution362_Conv. 
     -> [Convolution362_Output_0. 
    node_name = Node_0000000004_Plus364_Add. 
     -> [Plus364_Output_0. 
    node_name = Node_0000000005_ReLU366_Relu. 
     -> [ReLU366_Output_0. 
    node_name = Node_0000000006_Convolution380_Conv. 
     -> [Convolution380_Output_0. 
    node_name = Node_0000000007_Plus382_Add. 
     -> [Plus382_Output_0. 
    node_name = Node_0000000008_ReLU384_Relu. 
     -> [ReLU384_Output_0. 
    node_name = Node_0000000009_Pooling398_MaxPool. 
     -> [Pooling398_Output_0. 
    node_name = Node_0000000010_Dropout408_Dropout. 
     -> [Dropout408_Output_0. 
    node_name = Node_0000000011_Convolution418_Conv. 
     -> [Convolution418_Output_0. 
    node_name = Node_0000000012_Plus420_Add. 
     -> [Plus420_Output_0. 
    node_name = Node_0000000013_ReLU422_Relu. 
     -> [ReLU422_Output_0. 
    node_name = Node_0000000014_Convolution436_Conv. 
     -> [Convolution436_Output_0. 
    node_name = Node_0000000015_Plus438_Add. 
     -> [Plus438_Output_0. 
    node_name = Node_0000000016_ReLU440_Relu. 
     -> [ReLU440_Output_0. 
    node_name = Node_0000000017_Pooling454_MaxPool. 
     -> [Pooling454_Output_0. 
    node_name = Node_0000000018_Dropout464_Dropout. 
     -> [Dropout464_Output_0. 
    node_name = Node_0000000019_Convolution474_Conv. 
     -> [Convolution474_Output_0. 
    node_name = Node_0000000020_Plus476_Add. 
     -> [Plus476_Output_0. 
    node_name = Node_0000000021_ReLU478_Relu. 
     -> [ReLU478_Output_0. 
    node_name = Node_0000000022_Convolution492_Conv. 
     -> [Convolution492_Output_0. 
    node_name = Node_0000000023_Plus494_Add. 
     -> [Plus494_Output_0. 
    node_name = Node_0000000024_ReLU496_Relu. 
     -> [ReLU496_Output_0. 
    node_name = Node_0000000025_Convolution510_Conv. 
     -> [Convolution510_Output_0. 
    node_name = Node_0000000026_Plus512_Add. 
     -> [Plus512_Output_0. 
    node_name = Node_0000000027_ReLU514_Relu. 
     -> [ReLU514_Output_0. 
    node_name = Node_0000000028_Pooling528_MaxPool. 
     -> [Pooling528_Output_0. 
    node_name = Node_0000000029_Dropout538_Dropout. 
     -> [Dropout538_Output_0. 
    node_name = Node_0000000030_Convolution548_Conv. 
     -> [Convolution548_Output_0. 
    node_name = Node_0000000031_Plus550_Add. 
     -> [Plus550_Output_0. 
    node_name = Node_0000000032_ReLU552_Relu. 
     -> [ReLU552_Output_0. 
    node_name = Node_0000000033_Convolution566_Conv. 
     -> [Convolution566_Output_0. 
    node_name = Node_0000000034_Plus568_Add. 
     -> [Plus568_Output_0. 
    node_name = Node_0000000035_ReLU570_Relu. 
     -> [ReLU570_Output_0. 
    node_name = Node_0000000036_Convolution584_Conv. 
     -> [Convolution584_Output_0. 
    node_name = Node_0000000037_Plus586_Add. 
     -> [Plus586_Output_0. 
    node_name = Node_0000000038_ReLU588_Relu. 
     -> [ReLU588_Output_0. 
    node_name = Node_0000000039_Pooling602_MaxPool. 
     -> [Pooling602_Output_0. 
    node_name = Node_0000000040_Dropout612_Dropout. 
     -> [Dropout612_Output_0. 
    node_name = Node_0000000041_Times622_reshape0_Reshape. 
     -> [Dropout612_Output_0_reshape0. 
    node_name = Node_0000000042_Times622_MatMul. 
     -> [Times622_Output_0. 
    node_name = Node_0000000043_Plus624_Add. 
     -> [Plus624_Output_0. 
    node_name = Node_0000000044_ReLU636_Relu. 
     -> [ReLU636_Output_0. 
    node_name = Node_0000000045_Dropout646_Dropout. 
     -> [Dropout646_Output_0. 
    node_name = Node_0000000046_Times656_MatMul. 
     -> [Times656_Output_0. 
    node_name = Node_0000000047_Plus658_Add. 
     -> [Plus658_Output_0. 
    node_name = Node_0000000048_ReLU670_Relu. 
     -> [ReLU670_Output_0. 
    node_name = Node_0000000049_Dropout680_Dropout. 
     -> [Dropout680_Output_0. 
    node_name = Node_0000000050_Times690_MatMul. 
     -> [Times690_Output_0. 
    node_name = Node_0000000051_Plus692_Add. 
    @@@ ExposeIRnodes() [Outputs] = 1 --> 52. 
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    ***************** ValidateIRnodes: ***************** 
    ====================================  
    input_dims = [ 1, 1, 64, 64, ]. 
    --> input 0[Input3]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ ]. 
    --> input 1[Constant339]: Type 1; [0 dims] tensor  
    --------------- 
    input_dims = [ ]. 
    --> input 2[Constant343]: Type 1; [0 dims] tensor  
    --------------- 
    input_dims = [ 64, 1, 3, 3, ]. 
    --> input 3[Parameter3]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 64, 1, 1, ]. 
    --> input 4[Parameter4]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 64, 64, 3, 3, ]. 
    --> input 5[Parameter23]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 64, 1, 1, ]. 
    --> input 6[Parameter24]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 128, 64, 3, 3, ]. 
    --> input 7[Parameter63]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 128, 1, 1, ]. 
    --> input 8[Parameter64]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 128, 128, 3, 3, ]. 
    --> input 9[Parameter83]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 128, 1, 1, ]. 
    --> input 10[Parameter84]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 128, 3, 3, ]. 
    --> input 11[Parameter575]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 12[Parameter576]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 256, 3, 3, ]. 
    --> input 13[Parameter595]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 14[Parameter596]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 256, 3, 3, ]. 
    --> input 15[Parameter615]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 16[Parameter616]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 256, 3, 3, ]. 
    --> input 17[Parameter655]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 18[Parameter656]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 256, 3, 3, ]. 
    --> input 19[Parameter675]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 20[Parameter676]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 256, 256, 3, 3, ]. 
    --> input 21[Parameter695]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 256, 1, 1, ]. 
    --> input 22[Parameter696]: Type 1; [3 dims] tensor  
    --------------- 
    input_dims = [ 2, ]. 
    --> input 23[Dropout612_Output_0_reshape0_shape]: Type 7; [1 dims] tensor  
    --------------- 
    input_dims = [ 256, 4, 4, 1024, ]. 
    --> input 24[Parameter1367]: Type 1; [4 dims] tensor  
    --------------- 
    input_dims = [ 2, ]. 
    --> input 25[Parameter1367_reshape1_shape]: Type 7; [1 dims] tensor  
    --------------- 
    input_dims = [ 1024, ]. 
    --> input 26[Parameter1368]: Type 1; [1 dims] tensor  
    --------------- 
    input_dims = [ 1024, 1024, ]. 
    --> input 27[Parameter1403]: Type 1; [2 dims] tensor  
    --------------- 
    input_dims = [ 1024, ]. 
    --> input 28[Parameter1404]: Type 1; [1 dims] tensor  
    --------------- 
    input_dims = [ 1024, 8, ]. 
    --> input 29[Parameter1693]: Type 1; [2 dims] tensor  
    --------------- 
    input_dims = [ 8, ]. 
    --> input 30[Parameter1694]: Type 1; [1 dims] tensor  
    --------------- 
    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    output_dims = [ 1, 8, ]. 
    --> output 0/1[Plus692_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 4096, 1024, ]. 
    --> output 1/1[Parameter1367_reshape1]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1, 64, 64, ]. 
    --> output 2/1[Minus340_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 1, 64, 64, ]. 
    --> output 3/1[Block352_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 4/1[Convolution362_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 5/1[Plus364_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 6/1[ReLU366_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 7/1[Convolution380_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 8/1[Plus382_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 64, 64, ]. 
    --> output 9/1[ReLU384_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 32, 32, ]. 
    --> output 10/1[Pooling398_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 64, 32, 32, ]. 
    --> output 11/1[Dropout408_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 12/1[Convolution418_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 13/1[Plus420_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 14/1[ReLU422_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 15/1[Convolution436_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 16/1[Plus438_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 32, 32, ]. 
    --> output 17/1[ReLU440_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 16, 16, ]. 
    --> output 18/1[Pooling454_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 128, 16, 16, ]. 
    --> output 19/1[Dropout464_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 20/1[Convolution474_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 21/1[Plus476_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 22/1[ReLU478_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 23/1[Convolution492_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 24/1[Plus494_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 25/1[ReLU496_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 26/1[Convolution510_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 27/1[Plus512_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 16, 16, ]. 
    --> output 28/1[ReLU514_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 29/1[Pooling528_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 30/1[Dropout538_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 31/1[Convolution548_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 32/1[Plus550_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 33/1[ReLU552_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 34/1[Convolution566_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 35/1[Plus568_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 36/1[ReLU570_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 37/1[Convolution584_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 38/1[Plus586_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 8, 8, ]. 
    --> output 39/1[ReLU588_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 4, 4, ]. 
    --> output 40/1[Pooling602_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 256, 4, 4, ]. 
    --> output 41/1[Dropout612_Output_0]: Type 1; [4 dims] tensor  
    --------------- 
    output_dims = [ 1, 4096, ]. 
    --> output 42/1[Dropout612_Output_0_reshape0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 43/1[Times622_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 44/1[Plus624_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 45/1[ReLU636_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 46/1[Dropout646_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 47/1[Times656_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 48/1[Plus658_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 49/1[ReLU670_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 1024, ]. 
    --> output 50/1[Dropout680_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    output_dims = [ 1, 8, ]. 
    --> output 51/1[Times690_Output_0]: Type 1; [2 dims] tensor  
    --------------- 
    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
    ValidateIRnodes() 52 --> 52=52=52 valid output tensors  
    --------------- 
    ----------------- ValidateIRnodes. ----------------- 
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
    *** ExposeIRnodes: 1 --> 52 Outputs. 
    *** type: [FLOAT] ~?= STRING 
    TVZ10()  input_dims = [ 1, 1, 64, 64, ]. 
    --> input [0]: Type FLOAT; [4 dims] tensor  
    --------------- 
    Warning: Could not load "/opt/zetane/lib/graphviz/libgvplugin_pango.so.6" - file not found
    terminate called after throwing an instance of 'std::invalid_argument'
      what():  stod
    /usr/bin/zetane: line 26: 37102 Aborted                 (core dumped) ./Zetane --server
    
    
    opened by paulgavrikov 4
  • Free Trial not Available

    Free Trial not Available

    After clicking "upgrade 2 pro", I arrive at your pricing page. Clicking on "free trial" redirects me to the documentation, which instructs me to click the button "upgrade 2 pro". Now I'm stuck in an infinite loop and unhappy about it.

    I'd like to successfully exit this loop and try your product. Any Tips?

    opened by Whadup 3
  • sorry, i install deb in ubuntu20.04,but when i use it to load input jpg ,it crash,how can i get the log to find result

    sorry, i install deb in ubuntu20.04,but when i use it to load input jpg ,it crash,how can i get the log to find result

    (base) [email protected]:~/下载$ sudo dpkg -i Zetane-1.7.0.deb (正在读取数据库 ... 系统当前共安装有 330200 个文件和目录。) 准备解压 Zetane-1.7.0.deb ... 正在解压 zetane (1.7.0) 并覆盖 (1.7.0) ... 正在设置 zetane (1.7.0) ... 正在处理用于 gnome-menus (3.36.0-1ubuntu1) 的触发器 ... 正在处理用于 desktop-file-utils (0.24-1ubuntu3) 的触发器 ... 正在处理用于 mime-support (3.64ubuntu1) 的触发器 ... 正在处理用于 hicolor-icon-theme (0.17-2) 的触发器 ...

    opened by mathpopo 2
  • engine is not launched after running example 'hello world' code

    engine is not launched after running example 'hello world' code

    By following the guide here https://docs.zetane.com/getting_started.html#installation, I created a scripy to run the 'hello world' code. However, the engine was launched not shown anything

    OS: Windows 10.0 Zetane 1.7.0

    Console output:

    Dialing Zetane... Did not connect! Dialing Zetane... Did not connect! Dialing Zetane... Did not connect! running process: /usr/bin/zetane --server 127.0.0.1 --port 4004 Dialing Zetane... Did not connect! Dialing Zetane... Did not connect! Dialing Zetane... Connected to Zetane Engine! image

    opened by wftubby 0
  • engine is not launched after running example 'hello world' code

    engine is not launched after running example 'hello world' code

    By following the guide here https://docs.zetane.com/getting_started.html#installation, I created a scripy to run the 'hello world' code. However, the engine was not launched but keep printing "Dialing Zetane"

    OS: Ubuntu 18.04 Zetane 1.7.0

    Console output:

    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    running process: /usr/bin/zetane --server 127.0.0.1 --port 4004
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    Did not connect!
    Dialing Zetane...
    
    
    opened by akzing-hz 6
Releases(v1.7.4)
  • v1.7.4(Jun 1, 2022)

    Viewer Engine

    • Added support for ONNX 1.10.2
    • Added support for ONNX Runtime 1.10.0
    • Added support for Keras/TensorFlow 2.9.1
    • Improved progress notifications when loading Keras models
    • Fixed crash cause by nested Keras models.
    • Reduced Tensor viewer memory usage
    • Dropped support for Ubuntu 16.04 LTS. See the up-to-date Minimum Requirements.
    • Deprecated support for macOS 10.14 Mojave

    API

    • Added the Zetane API context manager to automate view updates and cleanup, resulting in less verbose code.
    • Added support for Python 3.9
    • Dropped support for Python 3.6
    • Fixed protobuf dependency versioning
    Source code(tar.gz)
    Source code(zip)
    Zetane-1.7.4.deb(273.45 MB)
    Zetane-1.7.4.dmg(312.91 MB)
    Zetane-1.7.4.msi(300.01 MB)
  • 1.7.0(Nov 15, 2021)

  • 1.6.2(Sep 22, 2021)

    • Added output blocks for models to prevent navigation to the end of the model graph
    • Added a Top-K output view for tensors that match certain shapes, e.g. (1, N). Classification models now have a more human understandable output.
    • Update to onnxruntime 1.8.1 to support latest ONNX opset.
    • Improve autodetection of input shapes to allow more inputs to pass inference without shape errors.
    • Fixes for RAM overuse
    • Fixes for Mesh API
    Source code(tar.gz)
    Source code(zip)
    Zetane-1.6.2.deb(347.23 MB)
    Zetane-1.6.2.dmg(326.94 MB)
    Zetane-1.6.2.msi(301.44 MB)
  • 1.5.0(Jun 16, 2021)

  • 1.4.0(May 26, 2021)

  • 1.3.0(Apr 21, 2021)

    • When ONNX models are loaded, an inference pass with sample data is run by default. That means all tensors / feature maps / weights / biases should be viewable immediately after input load. Please let us know if there are models that don't succeed at this initial pass so we can fix them!
    Screen Shot 2021-04-21 at 11 55 29 AM

    (PRO) User input nodes are now attached to the model architecture diagram. When using Zetane Viewer Pro ($15/month) you can load custom inputs and send them through the model. Currently supported formats are .npy, .npz, .pb, and the majority of image formats (jpg, png, tiff, hdr, pic). Screen Shot 2021-04-21 at 11 53 16 AM Screen Shot 2021-04-21 at 12 10 19 PM Screen Shot 2021-04-21 at 11 54 01 AM

    (PRO) When user inputs are misshapen, the engine will display an error about the model's shape expectation. Note that this feature is also usable by free users without the error popup, the input node will load the user input and show dimensions before attempting to run inference with the model. Screen Shot 2021-04-21 at 11 59 54 AM Screen Shot 2021-04-21 at 12 00 10 PM

    (PRO) Any errors during model inference will also appear in the UI. An example is the shape error above. Individual graph operations may fail at any point during the inference pass-- the engine will attempt to populate the graph outputs up until the point of the error, a stack trace of the model run.

    As always, we welcome feedback, bug reports, and any suggestions you might have.

    Source code(tar.gz)
    Source code(zip)
    Zetane-1.3.0.deb(395.53 MB)
    Zetane-1.3.0.dmg(451.85 MB)
    Zetane-1.3.0.msi(452.15 MB)
  • 1.2.0(Apr 5, 2021)

    • Shape mismatch errors for running model inference are shown in the UI, describing the expected input and the given input. (PRO)
    Screen Shot 2021-04-05 at 12 02 59 PM
    • Changed default UI interaction with a mouse wheel to zoom by default, right click to drag the UI.
    • Panels now scroll or move on hover, not just after being selected.
    • Tensor viewer displays the original shape from file or API, without reordering the dimensions to fit the view panel.
    • User notification for version upgrade now appears in the UI.
    • Mac / Linux now run in API mode by default.
    • Added a new ZTN snapshot for XAI features.
    • User inputs now show above the Model Explorer panel's input node.
    • A number of bug fixes and performance improvements
    Source code(tar.gz)
    Source code(zip)
    Zetane-1.2.0.deb(373.68 MB)
    Zetane-1.2.0.dmg(451.16 MB)
    Zetane-1.2.0.msi(438.49 MB)
  • 1.1.4(Feb 22, 2021)

Owner
Zetane Systems
Zetane Systems
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023