TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Overview

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

Code of our paper: TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Introduction:

Masked language models (MLMs) such as BERT and RoBERTa have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach

Main Results:

We show the comparison between TaCL (base version) and the original BERT (base version).

(1) English benchmark results on SQuAD (Rajpurkar et al., 2018) (dev set) and GLUE (Wang et al., 2019) average score.

Model SQuAD 1.1 (EM/F1) SQuAD 2.0 (EM/F1) GLUE Average
BERT 80.8/88.5 73.4/76.8 79.6
TaCL 81.6/89.0 74.4/77.5 81.2

(2) Chinese benchmark results (test set F1) on four NER tasks (MSRA, OntoNotes, Resume, and Weibo) and three Chinese word segmentation (CWS) tasks (PKU, CityU, and AS).

Model MSRA OntoNotes Resume Weibo PKU CityU AS
BERT 94.95 80.14 95.53 68.20 96.50 97.60 96.50
TaCL 95.44 82.42 96.45 69.54 96.75 98.16 96.75

Huggingface Models:

Model Name Model Address
English (cambridgeltl/tacl-bert-base-uncased) link
Chinese (cambridgeltl/tacl-bert-base-chinese) link

Example Usage:

import torch
# initialize model
from transformers import AutoModel, AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-uncased'
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# create input ids
text = '[CLS] clbert is awesome. [SEP]'
tokenized_token_list = tokenizer.tokenize(text)
input_ids = torch.LongTensor(tokenizer.convert_tokens_to_ids(tokenized_token_list)).view(1, -1)
# compute hidden states
representation = model(input_ids).last_hidden_state # [1, seqlen, embed_dim]

Tutorial (in Chinese language) on how to use Chinese TaCL BERT to performance Name Entity Recognition and Chinese word segmentation:

Tutorial link

Tutorial on how to reproduce the results in our paper:

1. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

2. Train TaCL:

(1) Prepare pre-training data:

Please refer to details provided in ./pretraining_data directory.

(2) Train the model:

Please refer to details provided in ./pretraining directory.

3. Experiments on English Benchmarks:

Please refer to details provided in ./english_benchmark directory.

4. Experiments on Chinese Benchmarks:

(1) Chinese Benchmark Data Preparation:

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

(2) Fine-tuning and Inference:

Please refer to details provided in ./chinese_benchmark directory.

5. Replicate Our Analysis Results:

We provide all essential code to replicate the results (the images below) provided in our analysis section. The related codes and instructions are located in ./analysis directory. Have fun!

Citation:

If you find our paper and resources useful, please kindly cite our paper:

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact

If you have any questions, feel free to contact me via ([email protected]).

Owner
Yixuan Su
I am a final-year PhD student at the University of Cambridge, supervised by Professor Nigel Collier.
Yixuan Su
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023