Open AI's Python library

Overview

OpenAI Python Library

The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It includes a pre-defined set of classes for API resources that initialize themselves dynamically from API responses which makes it compatible with a wide range of versions of the OpenAI API.

Documentation

See the OpenAI API docs.

Installation

You don't need this source code unless you want to modify the package. If you just want to use the package, just run:

pip install --upgrade openai

Install from source with:

python setup.py install

Usage

The library needs to be configured with your account's secret key which is available on the website. Either set it as the OPENAI_API_KEY environment variable before using the library:

export OPENAI_API_KEY='sk-...'

Or set openai.api_key to its value:

import openai
openai.api_key = "sk-..."

# list engines
engines = openai.Engine.list()

# print the first engine's id
print(engines.data[0].id)

# create a completion
completion = openai.Completion.create(engine="ada", prompt="Hello world")

# print the completion
print(completion.choices[0].text)

Microsoft Azure Endpoints

In order to use the library with Microsoft Azure endpoints, you need to set the api_type, api_base and api_version in addition to the api_key. The api_type must be set to 'azure' and the others correspond to the properites of your endpoint. In addition, the deployment name must be passed as the engine parameter.

import openai
openai.api_type = "azure"
openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2021-11-01-preview"

# create a completion
completion = openai.Completion.create(engine="deployment-namme", prompt="Hello world")

# print the completion
print(completion.choices[0].text)

# create a search and pass the deployment-name as the engine Id.
search = openai.Engine(id="deployment-namme").search(documents=["White House", "hospital", "school"], query ="the president")

# print the search
print(search)

Please note that for the moment, the Microsoft Azure endpoints can only be used for completion and search operations.

Command-line interface

This library additionally provides an openai command-line utility which makes it easy to interact with the API from your terminal. Run openai api -h for usage.

# list engines
openai api engines.list

# create a completion
openai api completions.create -e ada -p "Hello world"

Example code

Examples of how to use embeddings, fine tuning, semantic search, and codex can be found in the examples folder.

Embeddings

In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.

To get an embedding for a text string, you can use the embeddings method as follows in Python:

import openai
openai.api_key = "sk-..."  # supply your API key however you choose

# choose text to embed
text_string = "sample text"

# choose an embedding
model_id = "text-similarity-davinci-001"

# compute the embedding of the text
embedding = openai.Embedding.create(input=text_string, engine=model_id)['data'][0]['embedding']

An example of how to call the embeddings method is shown in the get embeddings notebook.

Examples of how to use embeddings are shared in the following Jupyter notebooks:

For more information on embeddings and the types of embeddings OpenAI offers, read the embeddings guide in the OpenAI documentation.

Fine tuning

Fine tuning a model on training data can both improve the results (by giving the model more examples to learn from) and reduce the cost & latency of API calls (by reducing the need to include training examples in prompts).

Examples of fine tuning are shared in the following Jupyter notebooks:

For more information on fine tuning, read the fine-tuning guide in the OpenAI documentation.

Requirements

  • Python 3.7.1+

In general we want to support the versions of Python that our customers are using, so if you run into issues with any version issues, please let us know at [email protected].

Credit

This library is inspired from the Stripe Python Library.

Owner
Pavan Ananth Sharma
Ethereum 2.0
Pavan Ananth Sharma
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022