Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

Overview

COCO LM Pretraining (wip)

Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were able to make contrastive learning work in a self-supervised manner for language model pretraining. Seems like a solid successor to Electra.

Install

$ pip install coco-lm-pytorch

Usage

An example using the x-transformers library

$ pip install x-transformers

Then

import torch
from coco_lm_pytorch import COCO

# (1) instantiate the generator and discriminator, making sure that the generator is roughly a quarter to a half of the size of the discriminator

from x_transformers import TransformerWrapper, Encoder

generator = TransformerWrapper(
    num_tokens = 20000,
    emb_dim = 128,
    max_seq_len = 1024,
    attn_layers = Encoder(
        dim = 256,         # smaller hidden dimension
        heads = 4,         # less heads
        ff_mult = 2,       # smaller feedforward dimension
        depth = 1
    )
)

discriminator = TransformerWrapper(
    num_tokens = 20000,
    emb_dim = 128,
    max_seq_len = 1024,
    attn_layers = Encoder(
        dim = 1024,
        heads = 16,
        ff_mult = 4,
        depth = 12
    )
)

# (2) weight tie the token and positional embeddings of generator and discriminator

generator.token_emb = discriminator.token_emb
generator.pos_emb = discriminator.pos_emb

# weight tie any other embeddings if available, token type embeddings, etc.

# (3) instantiate COCO

trainer = COCO(
    generator,
    discriminator,
    discr_dim = 1024,            # the embedding dimension of the discriminator
    discr_layer = 'norm',        # the layer name in the discriminator, whose output would be used for predicting token is still the same or replaced
    cls_token_id = 1,            # a token id must be reserved for [CLS], which is prepended to the sequence for contrastive learning
    mask_token_id = 2,           # the token id reserved for masking
    pad_token_id = 0,            # the token id for padding
    mask_prob = 0.15,            # masking probability for masked language modeling
    mask_ignore_token_ids = [],  # ids of tokens to ignore for mask modeling ex. (cls, sep)
    cl_weight = 1.,              # weight for the contrastive learning loss
    disc_weight = 1.,            # weight for the corrective learning loss
    gen_weight = 1.              # weight for the MLM loss
)

# (4) train

data = torch.randint(0, 20000, (1, 1024))

loss = trainer(data)
loss.backward()

# after much training, the discriminator should have improved

torch.save(discriminator, f'./pretrained-model.pt')

Citations

@misc{meng2021cocolm,
    title   = {COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining}, 
    author  = {Yu Meng and Chenyan Xiong and Payal Bajaj and Saurabh Tiwary and Paul Bennett and Jiawei Han and Xia Song},
    year    = {2021},
    eprint  = {2102.08473},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
You might also like...
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

Text-Summarization-using-NLP - Text Summarization using NLP  to fetch BBC News Article and summarize its text and also it includes custom article Summarization PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

MILES is a multilingual text simplifier inspired by LSBert - A BERT-based lexical simplification approach proposed in 2018. Unlike LSBert, MILES uses the bert-base-multilingual-uncased model, as well as simple language-agnostic approaches to complex word identification (CWI) and candidate ranking. PyTorch implementation of the paper:  Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation.  This is part of the CASL project: http://casl-project.ai/
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipBERT is designed based on 2D CNNs and transformers, and uses a sparse sampling strategy to enable efficient end-to-end video-and-language learning.

Comments
  • Question about corrective LM loss

    Question about corrective LM loss

    Hi @lucidrains ,

    Thanks for your great repo!

    I looked at your code: coco_lm_pytorch.py. I see there are three losses in line 242. weighted_loss = self.cl_weight * cl_loss + self.gen_weight * mlm_loss + self.disc_weight * disc_loss

    cl_loss is the contrastive loss, mlm_loss is the loss of the auxiliary generator, and disc_loss is the loss of binary discrimination. I wonder where the LM loss of corrective language modeling loss is. Could you point me?

    Best, Abdul.

    opened by elmadany 0
  • What can v0.0.2 do?

    What can v0.0.2 do?

    I'm quite excited to give COCO-LM a try! Thanks as always for the great speedy open source repo @lucidrains .

    Quick question: has this repository been tried on real data, and if so - loosely what type of setup? Trying to figure out whether jumping in coco-lm-pytorch I should have the expectation of being a first beta-tester, or I'm looking at something that is already stable. Thanks!

    opened by dginev 0
Releases(0.0.2)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022