Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

Overview

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode

Introduction

This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode & KenLM ngram as a simple way to boost word error rate (WER).

Included is a file to create an ngram with KenLM as well as a simple evaluation script to compare the results of using Wav2Vec2 with ctcdecode + KenLM vs. without using any language model.

Note: The scripts are written to be used on GPU. If you want to use a CPU instead, simply remove all .to("cuda") occurances in eval.py.

Installation

In a first step, one should install KenLM. For Ubuntu, it should be enough to follow the installation steps described here. The installed kenlm folder should be move into this repo for ./create_ngram.py to function correctly. Alternatively, one can also link the lmplz binary file to a lmplz bash command to directly run lmplz instead of ./kenlm/build/bin/lmplz.

Next, some Python dependencies should be installed. Assuming PyTorch is installed, it should be sufficient to run pip install -r requirements.txt.

Run evaluation

Create ngram

In a first step on should create a ngram. E.g. for polish the command would be:

./create_ngram.py --language polish --path_to_ngram polish.arpa

After the language model is created, one should open the file. one should add a The file should have a structure which looks more or less as follows:

\data\        
ngram 1=86586
ngram 2=546387
ngram 3=796581           
ngram 4=843999             
ngram 5=850874              
                                                  
\1-grams:
-5.7532206      
   
       0
0       
         -0.06677356                                                                            
-3.4645514      drugi   -0.2088903
...

   

Now it is very important also add a token to the n-gram so that it can be correctly loaded. You can simple copy the line:

0 -0.06677356

and change to . When doing this you should also inclease ngram by 1. The new ngram should look as follows:

\data\
ngram 1=86587
ngram 2=546387
ngram 3=796581
ngram 4=843999
ngram 5=850874

\1-grams:
-5.7532206      
    
        0
0       
          -0.06677356
0            -0.06677356
-3.4645514      drugi   -0.2088903
...

    

Now the ngram can be correctly used with pyctcdecode

Run eval

Having created the ngram, one can run:

./eval.py --language polish --path_to_ngram polish.arpa

To compare Wav2Vec2 + LM vs. Wav2Vec2 + No LM on polish.

Results

==================================================polish==================================================
polish - No LM - | WER: 0.3069742867206763 | CER: 0.06054530156286364 | Time: 32.37423086166382
polish - With LM - | WER: 0.39526828695550076 | CER: 0.17596985266474516 | Time: 62.017329692840576

I didn't obtain any good results even when trying out a variety of different settings for alpha and beta. Sadly there aren't many examples, tutorials or docs on parlance/ctcdecode so it's hard to find the reason for the problem.

Also tried it out for other languages like Portuguese and Spanish, but no luck there either.

Owner
Patrick von Platen
Patrick von Platen
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022