PyTorch implementation of the wavelet analysis from Torrence & Compo

Overview

Continuous Wavelet Transforms in PyTorch

This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The code builds upon the excellent implementation of Aaron O'Leary by adding a PyTorch filter bank wrapper to enable fast convolution on the GPU. Specifically, the code was written to speed-up the CWT computation for a large number of 1D signals and relies on torch.nn.Conv1d for convolution.

PyTorch Wavelets

Citation

If you found this code useful, please cite our paper Repetition Estimation (IJCV, 2019):

@article{runia2019repetition,
  title={Repetition estimation},
  author={Runia, Tom FH and Snoek, Cees GM and Smeulders, Arnold WM},
  journal={International Journal of Computer Vision},
  volume={127},
  number={9},
  pages={1361--1383},
  year={2019},
  publisher={Springer}
}

Usage

In addition to the PyTorch implementation defined in WaveletTransformTorch the original SciPy version is also included in WaveletTransform for completeness. As the GPU implementation highly benefits from parallelization, the cwt and power methods expect signal batches of shape [num_signals,signal_length] instead of individual signals.

import numpy as np
from wavelets_pytorch.transform import WaveletTransform        # SciPy version
from wavelets_pytorch.transform import WaveletTransformTorch   # PyTorch version

dt = 0.1         # sampling frequency
dj = 0.125       # scale distribution parameter
batch_size = 32  # how many signals to process in parallel

# Batch of signals to process
batch = [batch_size x signal_length] 

# Initialize wavelet filter banks (scipy and torch implementation)
wa_scipy = WaveletTransform(dt, dj)
wa_torch = WaveletTransformTorch(dt, dj, cuda=True)

# Performing wavelet transform (and compute scalogram)
cwt_scipy = wa_scipy.cwt(batch)
cwt_torch = wa_torch.cwt(batch)

# For plotting, see the examples/plot.py function.
# ...

Supported Wavelets

The wavelet implementations are taken from here. Default is the Morlet wavelet.

Benchmark

Performing parallel CWT computation on the GPU using PyTorch results in a significant speed-up. Increasing the batch size will give faster runtimes. The plot below shows a comaprison between the scipy versus torch implementation as function of the batch size N and input signal length. These results were obtained on a powerful Linux desktop with NVIDIA Titan X GPU.

Installation

Clone and install:

git clone https://github.com/tomrunia/PyTorchWavelets.git
cd PyTorchWavelets
pip install -r requirements.txt
python setup.py install

Requirements

  • Python 2.7 or 3.6 (other versions might also work)
  • Numpy (developed with 1.14.1)
  • Scipy (developed with 1.0.0)
  • PyTorch >= 0.4.0

The core of the PyTorch implementation relies on the torch.nn.Conv1d module.

License

MIT License

Copyright (c) 2018 Tom Runia ([email protected])

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Tom Runia
Machine Learning
Tom Runia
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022