A PyTorch implementation of SIN: Superpixel Interpolation Network

Related tags

Deep LearningSIN
Overview

SIN: Superpixel Interpolation Network

This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

SIN: Superpixel Interpolation Network

Prerequisites

The training code was mainly developed and tested with python 3.6, PyTorch 1.4, CUDA 10, and Ubuntu 18.04.

Demo

The demo script run_demo.py provides the superpixels with grid size 16 x 16 using our pre-trained model (in /pretrained_ckpt). Please feel free to provide your own images by copying them into /demo/inputs, and run

python run_demo.py --data_dir=./demo/inputs --data_suffix=jpg --output=./demo 

The results will be generate in a new folder under /demo called spixel_viz.

Data preparation

To generate training and test dataset, please first download the data from the original BSDS500 dataset, and extract it to . Then, run

cd data_preprocessing
python pre_process_bsd500.py --dataset=
   
     --dump_root=
    
     
python pre_process_bsd500_ori_sz.py --dataset=
     
       --dump_root=
      
       
cd ..

      
     
    
   

The code will generate three folders under the , named as /train, /val, and /test, and three .txt files record the absolute path of the images, named as train.txt, val.txt, and test.txt.

Training

Once the data is prepared, we should be able to train the model by running the following command

python main.py --data=
   
     --savepath=
    

    
   

if we wish to continue a train process or fine-tune from a pre-trained model, we can run

python main.py --data=
   
     --savepath=
    
      --pretrained=
      

     
    
   

The code will start from the recorded status, which includes the optimizer status and epoch number.

The training log can be viewed from the tensorboard session by running

tensorboard --logdir=
   
     --port=8888

   

Testing

We provide test code to generate: 1) superpixel visualization and 2) the.csv files for evaluation.

To test on BSDS500, run

python run_infer_bsds.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on NYUv2, please follow the intruction on the superpixel benchmark to generate the test dataset, and then run

python run_infer_nyu.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on other datasets, please first collect all the images into one folder , and then convert them into the same format (e.g. .png or .jpg) if necessary, and run

python run_demo.py --data_dir=
   
     --data_suffix=
    
      --output=
     
       --pretrained=
      

      
     
    
   

Superpixels with grid size 16 x 16 will be generated by default. To generate the superpixel with a different grid size, we simply need to resize the images into the approporate resolution before passing them through the code. Please refer to run_infer_nyu.py for the details.

Evaluation

We use the code from superpixel benchmark for superpixel evaluation. A detailed instruction is available in the repository, please

(1) download the code and build it accordingly;

(2) edit the variables $SUPERPIXELS, IMG_PATH and GT_PATH in /eval_spixel/my_eval.sh,

(3) run

cp /eval_spixel/my_eval.sh 
   
    /examples/bash/
cd  
    
     /examples/
bash my_eval.sh

    
   

several files should be generated in the map_csv folders in the corresponding test outputs;

(4) run

cd eval_spixel
python copy_resCSV.py --src=
   
     --dst=
    

    
   

(5) open /eval_spixel/plot_benchmark_curve.m , set the our1l_res_path as and modify the num_list according to the test setting. The default setting is for our BSDS500 test set.;

(6) run the plot_benchmark_curve.m, the ASA Score, CO Score, and BR-BP curve of our method should be shown on the screen. If you wish to compare our method with the others, you can first run the method and organize the data as we state above, and uncomment the code in the plot_benchmark_curve.m to generate a similar figure shown in our papers.

Acknowledgement

The code is implemented based on superpixel_fcn. We would like to express our sincere thanks to the contributors.

Cite

If you use SIN in your work please cite our paper:

@article{yuan2021sin,
title={SIN: Superpixel Interpolation Network},
author={Qing Yuan, Songfeng Lu, Yan Huang, Wuxin Sha},
booktitle={PRICAI},
year={2021}
}

Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022