[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overview

Chasing Sparsity in Vision Transformers: An End-to-End Exploration

License: MIT

Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Exploration.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overall Results

Extensive results on ImageNet with diverse ViT backbones validate the effectiveness of our proposals which obtain significantly reduced computational cost and almost unimpaired generalization. Perhaps most surprisingly, we find that the proposed sparse (co-)training can even improve the ViT accuracy rather than compromising it, making sparsity a tantalizing “free lunch”. For example, our sparsified DeiT-Small at (5%, 50%) sparsity for (data, architecture), improves 0.28% top-1 accuracy, and meanwhile enjoys 49.32% FLOPs and 4.40% running time savings.

Proposed Framework of SViTE

Implementations of SViTE

Set Environment

conda create -n vit python=3.6

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

pip install tqdm scipy timm

git clone https://github.com/NVIDIA/apex

cd apex

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

pip install -v --disable-pip-version-check --no-cache-dir ./

Cmd

Command for unstructured sparsity, i.e., SViTE.

  • SViTE-Small
bash cmd/ vm/0426/vm1.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_small_patch16_224 \
    --epochs 600 \
    --batch-size 64 \
    --data-path ../../imagenet \
    --output_dir ./small_dst_uns_0426_vm1 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 15000 \
    --growth gradient \
    --death magnitude \
    --redistribution none
  • SViTE-Base
bash cmd/ vm/0426/vm3.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_base_patch16_224 \
    --epochs 600 \
    --batch-size 128 \
    --data-path ../../imagenet \
    --output_dir ./base_dst_uns_0426_vm3 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 7000 \
    --growth gradient \
    --death magnitude \
    --redistribution none

Remark. More commands can be found under the "cmd" folder.

Command for structured sparsity is comming soon!

Pre-traiend SViTE Models.

  1. SViTE-Base with 40% structural sparsity ACC=82.22

https://www.dropbox.com/s/ix7mmduvf0wlc4b/deit_base_structure_40_82.22.pth?dl=0

  1. SViTE-Base with 40% unstructured sparsity ACC=81.56

https://www.dropbox.com/s/vltm4piwn9cwsop/deit_base_unstructure_40_81.56.pth?dl=0

  1. SViTE-Small with 50% unstructued sparsity and 5% data sparisity ACC=80.18

https://www.dropbox.com/s/kofps21g857wlbt/deit_small_unstructure_50_sparseinput_0.95_80.18.pth?dl=0

  1. SViTE-Small with 50% unstructured sparsity and 10% data sparsity ACC=79.91

https://www.dropbox.com/s/bdhpc6nfrwahcuc/deit_small_unstructure_50_sparseinput_0.90_79.91.pth?dl=0

Citation

@misc{chen2021chasing,
      title={Chasing Sparsity in Vision Transformers:An End-to-End Exploration}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Lu Yuan and Lei Zhang and Zhangyang Wang},
      year={2021},
      eprint={2106.04533},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledge Related Repos

ViT : https://github.com/jeonsworld/ViT-pytorch

ViT : https://github.com/google-research/vision_transformer

Rig : https://github.com/google-research/rigl

DeiT: https://github.com/facebookresearch/deit

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023