Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

Overview



GitHub

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published in "Findings of EMNLP". You can read our camera-ready paper through ACL Anthology or arXiv pre-print.

Revisiting Pre-trained Models for Chinese Natural Language Processing
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu

For resources other than MacBERT, please visit the following repositories:

More resources by HFL: https://github.com/ymcui/HFL-Anthology

News

2021/10/24 We propose the first pre-trained language model that specifically focusing on Chinese minority languages. Check:https://github.com/ymcui/Chinese-Minority-PLM

2021/7/21 由哈工大SCIR多位学者撰写的《自然语言处理:基于预训练模型的方法》已出版,欢迎大家选购,也可参与我们的赠书活动

[Nov 3, 2020] Pre-trained MacBERT models are available through direct Download or Quick Load. Use it as if you are using original BERT (except for it cannot perform the original MLM).

[Sep 15, 2020] Our paper "Revisiting Pre-Trained Models for Chinese Natural Language Processing" is accepted to Findings of EMNLP as a long paper.

Guide

Section Description
Introduction Introduction to MacBERT
Download Download links for MacBERT
Quick Load Learn how to quickly load our models through 🤗 Transformers
Results Results on several Chinese NLP datasets
FAQ Frequently Asked Questions
Citation Citation

Introduction

MacBERT is an improved BERT with novel MLM as correction pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.

Instead of masking with [MASK] token, which never appears in the fine-tuning stage, we propose to use similar words for the masking purpose. A similar word is obtained by using Synonyms toolkit (Wang and Hu, 2017), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement.

Here is an example of our pre-training task.

Example
Original Sentence we use a language model to predict the probability of the next word.
MLM we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word .
Whole word masking we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
N-gram masking we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word .
MLM as correction we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word .

Except for the new pre-training task, we also incorporate the following techniques.

  • Whole Word Masking (WWM)
  • N-gram masking
  • Sentence-Order Prediction (SOP)

Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.

For more technical details, please check our paper: Revisiting Pre-trained Models for Chinese Natural Language Processing

Download

We mainly provide pre-trained MacBERT models in TensorFlow 1.x.

  • MacBERT-large, Chinese: 24-layer, 1024-hidden, 16-heads, 324M parameters
  • MacBERT-base, Chinese:12-layer, 768-hidden, 12-heads, 102M parameters
Model Google Drive iFLYTEK Cloud Size
MacBERT-large, Chinese TensorFlow TensorFlow(pw:3Yg3) 1.2G
MacBERT-base, Chinese TensorFlow TensorFlow(pw:E2cP) 383M

PyTorch/TensorFlow2 Version

If you need these models in PyTorch/TensorFlow2,

  1. Convert TensorFlow checkpoint into PyTorch/TensorFlow2, using 🤗 Transformers

  2. Download from https://huggingface.co/hfl

Steps: select one of the model in the page above → click "list all files in model" at the end of the model page → download bin/json files from the pop-up window.

Quick Load

With Huggingface-Transformers, the models above could be easily accessed and loaded through the following codes.

tokenizer = BertTokenizer.from_pretrained("MODEL_NAME")
model = BertModel.from_pretrained("MODEL_NAME")

**Notice: Please use BertTokenizer and BertModel for loading MacBERT models. **

The actual model and its MODEL_NAME are listed below.

Original Model MODEL_NAME
MacBERT-large hfl/chinese-macbert-large
MacBERT-base hfl/chinese-macbert-base

Results

We present the results of MacBERT on the following six tasks (please read our paper for other results).

To ensure the stability of the results, we run 10 times for each experiment and report the maximum and average scores (in brackets).

CMRC 2018

CMRC 2018 dataset is released by the Joint Laboratory of HIT and iFLYTEK Research. The model should answer the questions based on the given passage, which is identical to SQuAD. Evaluation metrics: EM / F1

Model Development Test Challenge #Params
BERT-base 65.5 (64.4) / 84.5 (84.0) 70.0 (68.7) / 87.0 (86.3) 18.6 (17.0) / 43.3 (41.3) 102M
BERT-wwm 66.3 (65.0) / 85.6 (84.7) 70.5 (69.1) / 87.4 (86.7) 21.0 (19.3) / 47.0 (43.9) 102M
BERT-wwm-ext 67.1 (65.6) / 85.7 (85.0) 71.4 (70.0) / 87.7 (87.0) 24.0 (20.0) / 47.3 (44.6) 102M
RoBERTa-wwm-ext 67.4 (66.5) / 87.2 (86.5) 72.6 (71.4) / 89.4 (88.8) 26.2 (24.6) / 51.0 (49.1) 102M
ELECTRA-base 68.4 (68.0) / 84.8 (84.6) 73.1 (72.7) / 87.1 (86.9) 22.6 (21.7) / 45.0 (43.8) 102M
MacBERT-base 68.5 (67.3) / 87.9 (87.1) 73.2 (72.4) / 89.5 (89.2) 30.2 (26.4) / 54.0 (52.2) 102M
ELECTRA-large 69.1 (68.2) / 85.2 (84.5) 73.9 (72.8) / 87.1 (86.6) 23.0 (21.6) / 44.2 (43.2) 324M
RoBERTa-wwm-ext-large 68.5 (67.6) / 88.4 (87.9) 74.2 (72.4) / 90.6 (90.0) 31.5 (30.1) / 60.1 (57.5) 324M
MacBERT-large 70.7 (68.6) / 88.9 (88.2) 74.8 (73.2) / 90.7 (90.1) 31.9 (29.6) / 60.2 (57.6) 324M

DRCD

DRCD is also a span-extraction machine reading comprehension dataset, released by Delta Research Center. The text is written in Traditional Chinese. Evaluation metrics: EM / F1

Model Development Test #Params
BERT-base 83.1 (82.7) / 89.9 (89.6) 82.2 (81.6) / 89.2 (88.8) 102M
BERT-wwm 84.3 (83.4) / 90.5 (90.2) 82.8 (81.8) / 89.7 (89.0) 102M
BERT-wwm-ext 85.0 (84.5) / 91.2 (90.9) 83.6 (83.0) / 90.4 (89.9) 102M
RoBERTa-wwm-ext 86.6 (85.9) / 92.5 (92.2) 85.6 (85.2) / 92.0 (91.7) 102M
ELECTRA-base 87.5 (87.0) / 92.5 (92.3) 86.9 (86.6) / 91.8 (91.7) 102M
MacBERT-base 89.4 (89.2) / 94.3 (94.1) 89.5 (88.7) / 93.8 (93.5) 102M
ELECTRA-large 88.8 (88.7) / 93.3 (93.2) 88.8 (88.2) / 93.6 (93.2) 324M
RoBERTa-wwm-ext-large 89.6 (89.1) / 94.8 (94.4) 89.6 (88.9) / 94.5 (94.1) 324M
MacBERT-large 91.2 (90.8) / 95.6 (95.3) 91.7 (90.9) / 95.6 (95.3) 324M

XNLI

We use XNLI data for testing the NLI task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 77.8 (77.4) 77.8 (77.5) 102M
BERT-wwm 79.0 (78.4) 78.2 (78.0) 102M
BERT-wwm-ext 79.4 (78.6) 78.7 (78.3) 102M
RoBERTa-wwm-ext 80.0 (79.2) 78.8 (78.3) 102M
ELECTRA-base 77.9 (77.0) 78.4 (77.8) 102M
MacBERT-base 80.3 (79.7) 79.3 (78.8) 102M
ELECTRA-large 81.5 (80.8) 81.0 (80.9) 324M
RoBERTa-wwm-ext-large 82.1 (81.3) 81.2 (80.6) 324M
MacBERT-large 82.4 (81.8) 81.3 (80.6) 324M

ChnSentiCorp

We use ChnSentiCorp data for testing sentiment analysis. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 94.7 (94.3) 95.0 (94.7) 102M
BERT-wwm 95.1 (94.5) 95.4 (95.0) 102M
BERT-wwm-ext 95.4 (94.6) 95.3 (94.7) 102M
RoBERTa-wwm-ext 95.0 (94.6) 95.6 (94.8) 102M
ELECTRA-base 93.8 (93.0) 94.5 (93.5) 102M
MacBERT-base 95.2 (94.8) 95.6 (94.9) 102M
ELECTRA-large 95.2 (94.6) 95.3 (94.8) 324M
RoBERTa-wwm-ext-large 95.8 (94.9) 95.8 (94.9) 324M
MacBERT-large 95.7 (95.0) 95.9 (95.1) 324M

LCQMC

LCQMC is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 89.4 (88.4) 86.9 (86.4) 102M
BERT-wwm 89.4 (89.2) 87.0 (86.8) 102M
BERT-wwm-ext 89.6 (89.2) 87.1 (86.6) 102M
RoBERTa-wwm-ext 89.0 (88.7) 86.4 (86.1) 102M
ELECTRA-base 90.2 (89.8) 87.6 (87.3) 102M
MacBERT-base 89.5 (89.3) 87.0 (86.5) 102M
ELECTRA-large 90.7 (90.4) 87.3 (87.2) 324M
RoBERTa-wwm-ext-large 90.4 (90.0) 87.0 (86.8) 324M
MacBERT-large 90.6 (90.3) 87.6 (87.1) 324M

BQ Corpus

BQ Corpus is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 86.0 (85.5) 84.8 (84.6) 102M
BERT-wwm 86.1 (85.6) 85.2 (84.9) 102M
BERT-wwm-ext 86.4 (85.5) 85.3 (84.8) 102M
RoBERTa-wwm-ext 86.0 (85.4) 85.0 (84.6) 102M
ELECTRA-base 84.8 (84.7) 84.5 (84.0) 102M
MacBERT-base 86.0 (85.5) 85.2 (84.9) 102M
ELECTRA-large 86.7 (86.2) 85.1 (84.8) 324M
RoBERTa-wwm-ext-large 86.3 (85.7) 85.8 (84.9) 324M
MacBERT-large 86.2 (85.7) 85.6 (85.0) 324M

FAQ

Question 1: Do you have an English version of MacBERT?

A1: Sorry, we do not have English version of pre-trained MacBERT.

Question 2: How to use MacBERT?

A2: Use it as if you are using original BERT in the fine-tuning stage (just replace the checkpoint and config files). Also, you can perform further pre-training on our checkpoint with MLM/NSP/SOP objectives.

Question 3: Could you provide pre-training code for MacBERT?

A3: Sorry, we cannot provide source code at the moment, and maybe we'll release them in the future, but there is no guarantee.

Question 4: How about releasing the pre-training data?

A4: We have no right to redistribute these data, which will have potential legal violations.

Question 5: Will you release pre-trained MacBERT on a larger data?

A5: Currently, we have no plans on this.

Citation

If you find our resource or paper is useful, please consider including the following citation in your paper.

@inproceedings{cui-etal-2020-revisiting,
    title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
    author = "Cui, Yiming  and
      Che, Wanxiang  and
      Liu, Ting  and
      Qin, Bing  and
      Wang, Shijin  and
      Hu, Guoping",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
    pages = "657--668",
}

Or:

@journal{cui-etal-2021-pretrain,
  title={Pre-Training with Whole Word Masking for Chinese BERT},
  author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing},
  journal={IEEE Transactions on Audio, Speech and Language Processing},
  year={2021},
  url={https://ieeexplore.ieee.org/document/9599397},
  doi={10.1109/TASLP.2021.3124365},
 }

Acknowledgment

The first author would like to thank Google TensorFlow Research Cloud (TFRC) Program.

Issues

Before you submit an issue:

  • You are advised to read FAQ first before you submit an issue.
  • Repetitive and irrelevant issues will be ignored and closed by [stable-bot](stale · GitHub Marketplace). Thank you for your understanding and support.
  • We cannot acommodate EVERY request, and thus please bare in mind that there is no guarantee that your request will be met.
  • Always be polite when you submit an issue.
Owner
Yiming Cui
NLP Researcher. Mainly interested in Machine Reading Comprehension, Question Answering, Pre-trained Language Model, etc.
Yiming Cui
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022