This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

Overview

GPT-2 in Catalan

This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2. In other words... this is more of a prototype and a personal playground than a serious attempt to have a fully functional GPT-2 in Catalan.

Nevertheless, I hope this can also help someone else train their own GPT-2 model and provide some pointers on how to do so.

Suggestions and constructive criticism are always welcome!

1. GPT-2 πŸ“

1.1. What is GPT-2 ❓

GPT-2 (GPT-2 stands for Generative Pre-trained Transformer 2) is a transformer-based language model trained in large volumes of data and was not trained with a specific task in mind. Nevertheless, it has probably been used mostly for generating new text.

A better and further explanation can be found here (http://jalammar.github.io/illustrated-gpt2/).

1.2. Why GPT-2 ❔

It is undeniable that GPT-2 played a large role and became very popular when it came out. It has also created some controversy. These aside, GPT-2 acted as a big step forward in terms of generating texts... And is also "faster" to train on custom data than its next generation sibling, GPT-3.

2. Training πŸ”¨

2.1. Requirements πŸ“Ž

You will need a powerful GPU or reduce the batch size. You can also use a VM from a Cloud service such as Google Colab or Microsoft Azure.

2.2. Training Script πŸ“ˆ

The training is implemented in the train_GPT2.py script, which serves as a skeleton. You can run it from the Commandline and passing all the arguments.

e.g.

cd src
./train_GPT2.py \
    --model DeepESP/gpt2-spanish \
    --tokenizer DeepESP/gpt2-spanish \
    --train_path ../data/catalan_corpus_train.csv \
    --test_path ../data/catalan_corpus_test.csv \
    --n_epochs 1 \
    --train_batch_size 4 \
    --eval_batch_size 8 \
    --eval_steps 100 \
    --save_steps 1000 \
    --warmup_steps 100 \
    --output gpt2-catalan

2.3. About the data used πŸ“‚ open_file_folder

The data used has mostly been the WikiCorpus data provided by the Computer Science department @ FIB, UPC (Facultat d'Informàtica de Barcelona, Universitat Politècnica de Catalunya).

You can download it using the datasets library from Huggingface:

from datasets import load_dataset

dataset = load_dataset("wikicorpus, 'raw_ca')

Or you can use the download_wikicorpus.py file in this repository, which also splits the data in train/test and can create a smaller subset for testing, if desired.

2.3.1. WikiCorpus PROs πŸ‘

Well, the data is already obtained. That's always a pro.

2.3.2. WikiCorpus CONs πŸ‘Ž

We are limiting the knowledge of the Language model to data from the Wikipedia. Therefore, this model will probably be more error-prone with informal text inputs. This includes data from chats, colloquialisms and text from social media.

Additionally, the size of the data is tiny with respect to what it should be.

Further training for specific tasks ⚑

Once the model is trained in Catalan and we have a base, we can further train this model for a specific task in mind.

A couple of Proof of Concepts (PoC) have been done using data gathered from Twitter and also from Catalan songs.

Testing the model 🐱

We can test the trained model easily using the script test_generation.py.

cd src
python .\test_generation.py -t DeepESP/gpt2-spanish -m ../data/gpt2-catalan -i generation_test.txt

3. Questions ❓ ❔

3.1. Why Catalan ❓

Artificial Intelligence should not be only for largely spoken languages, such as English or even Spanish. Catalan, a minority language, is my mother tongue and it's always fun to see something you work with also operating in your own language. So why not?

3.2. Why use a Pretrained model in Spanish ❔

Although Spanish and Catalan are different languages, they share a lot of expressions, vocabulary and grammatical structures. Therefore, basing a Catalan model on a previously trained model in a close language such as Spanish is not unreasonable.

Transferring the knowledge from it to our model is better than starting from zero, specially to save computational time.

3.3. Can I use another data/language ❓

Even though the scripts are all prepared with the Catalan language in mind, the scripts should work with any text data, be it Catalan from the Wikicorpus,

Feel free to change the CatalanDataset class or swap it with yours, since probably formatting of the input text is the most varying aspect between projects.

Be sure to also change the base model, since if you want to train another language (e.g. German), basing it on a pre-trained model in Spanish will not work well.

4. TO-DO 🚧

Since we are actually using the Transfer learning approach and relying on a previously pretrained model in Spanish, we probably don't have as an accurate model as we should.

More varied data should also be used during the training, because it is very biased towards informative data (for obvious reasons).

Owner
Laura
.
Laura
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk NeuhΓ€user 4 Apr 06, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced β€œpar-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO πŸ¦• ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji JΔ™zykowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023