An example to implement a new backbone with OpenMMLab framework.

Overview

Backbone example on OpenMMLab framework

English | 简体中文

Introduction

This is an template repo about how to use OpenMMLab framework to develop a new backbone for multiple vision tasks.

With OpenMMLab framework, you can easily develop a new backbone and use MMClassification, MMDetection and MMSegmentation to benchmark your backbone on classification, detection and segmentation tasks.

Setup environment

It requires PyTorch and the following OpenMMLab packages:

  • MIM: A command-line tool to manage OpenMMLab packages and experiments.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark. Besides classification, it's also a repository to store various backbones.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.

Assume you have prepared your Python and PyTorch environment, just use the following command to setup the environment.

pip install openmim mmcls mmdet mmsegmentation
mim install mmcv-full

Data preparation

The data structure looks like below:

data/
├── imagenet
│   ├── train
│   ├── val
│   └── meta
│       ├── train.txt
│       └── val.txt
├── ade
│   └── ADEChallengeData2016
│       ├── annotations
│       └── images
└── coco
    ├── annotations
    │   ├── instance_train2017.json
    │   └── instance_val2017.json
    ├── train2017
    └── val2017

Here, we only list the minimal files for training and validation on ImageNet (classification), ADE20K (segmentation) and COCO (object detection).

If you want benchmark on more datasets or tasks, for example, panoptic segmentation with MMDetection, just organize your dataset according to MMDetection's requirements. For semantic segmentation task, you can organize your dataset according to this tutorial

Usage

Implement your backbone

In this example repository, we use the ConvNeXt as an example to show how to implement a backbone quickly.

  1. Create your backbone file and put it in the models folder. In this example, models/convnext.py.

    In this file, just implement your backbone with PyTorch with two modifications:

    1. The backbone and modules should inherits mmcv.runner.BaseModule. The BaseModule is almost the same as the torch.nn.Module, and supports using init_cfg to specify the initizalization method includes pre-trained model.

    2. Use one-line decorator as below to register the backbone class to the mmcls.models.BACKBONES registry.

      @BACKBONES.register_module(force=True)

      What is registry? Have a look at here!

  2. [Optional] If you want to add some extra components for specific task, you can also add it refers to models/det/layer_decay_optimizer_constructor.py.

  3. Add your backbone class and custom components to models/__init__.py.

Create config files

Add your config files for each task to configs/. If your are not familiar with config files, the tutorial can help you.

In a word, use base config files of model, dataset, schedule and runtime to compose your config files. Of course, you can also override some settings of base config in your config files, even write all settings in one file.

In this template, we provide a suit of popular base config files, you can also find more useful base configs from mmcls, mmdet and mmseg.

Training and testing

For training and testing, you can directly use mim to train and test the model

At first, you need to add the current folder the the PYTHONPATH, so that Python can find your model files.

export PYTHONPATH=`pwd`:$PYTHONPATH 

On local single GPU:

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)"

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs (4 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher pytorch --gpus 4

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher pytorch --gpus 4

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4 

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher pytorch --gpus 4
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs in multiple nodes with Slurm (total 16 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
  • PARTITION: the slurm partition you are using
Owner
Ma Zerun
Ma Zerun
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022