"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

Related tags

Deep LearningStAR_KGC
Overview

STAR_KGC

This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021).

1. Thanks

The repository is partially based on huggingface transformers, KG-BERT and RotatE.

2. Installing requirement packages

  • conda create -n StAR python=3.6
  • source activate StAR
  • pip install numpy torch tensorboardX tqdm boto3 requests regex sacremoses sentencepiece matplotlib
2.1 Optional package (for mixed float Computation)

3. Dataset

  • WN18RR, FB15k-237, UMLS

    • Train and test set in ./data
    • As validation on original dev set is costly, we validated the model on dev subset during training.
    • The dev subset of WN18RR is provided in ./data/WN18RR called new_dev.dict. Use below commands to get the dev subset for WN18RR (FB15k-237 is similar without the --do_lower_case) used in training process.
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_train \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps -1 \
     	--save_steps 2000 \
     	--model_name_or_path bert-base-uncased \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_eval \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps 1000 \
     	--save_steps 2000 \
     	--model_name_or_path ./result/WN18RR_get_dev \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
  • NELL-One

    • We reformat original NELL-One as the three benchmarks above.
    • Please run the below command to get the reformatted data.
     python reformat_nell_one.py --data_dir path_to_downloaded --output_dir ./data/NELL_standard
    

4. Training and Test (StAR)

Run the below commands for reproducing results in paper. Note, all the eval_steps is set to -1 to train w/o validation and save the last checkpoint, because standard dev is very time-consuming. This can get similar results as in the paper.

4.1 WN18RR

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/WN18RR_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \
CUDA_VISIBLE_DEVICES=2 \
python run_link_prediction.py \
    --model_class bert \
    --weight_decay 0.01 \
    --learning_rate 5e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/WN18RR_bert \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \

4.2 FB15k-237

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7. \
    --dataset FB15k-237 \
    --max_seq_length 100 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/FB15k-237_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean \

4.3 UMLS

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 20 \
    --dataset UMLS \
    --max_seq_length 16 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 200 \
    --model_name_or_path roberta-large \
    --output_dir ./result/UMLS_model \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean 

4.4 NELL-One

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class bert \
    --do_train --do_eval \usepacka--do_prediction \
    --warmup_proportion 0.1 \
    --learning_rate 5e-5 \
    --num_train_epochs 8. \
    --dataset NELL_standard \
    --max_seq_length 32 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/NELL_model \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean 

5. StAR_Self-Adp

5.1 Data preprocessing

  • Get the trained model of RotatE, more details please refer to RotatE.

  • Run the below commands sequentially to get the training dataset of StAR_Self-Adp.

    • Run the run_get_ensemble_data.py in ./StAR
     CUDA_VISIBLE_DEVICES=0 python run_get_ensemble_data.py \
     	--dataset WN18RR \
     	--model_class roberta \
     	--model_name_or_path ./result/WN18RR_roberta-large \
     	--output_dir ./result/WN18RR_roberta-large \
     	--seed 42 \
     	--fp16 
    
    • Run the ./codes/run.py in rotate. (please replace the TRAINED_MODEL_PATH with your own trained model's path)
     CUDA_VISIBLE_DEVICES=3 python ./codes/run.py \
     	--cuda --init ./models/RotatE_wn18rr_0 \
     	--test_batch_size 16 \
     	--star_info_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
     	--get_scores --get_model_dataset 
    

5.2 Train and Test

  • Run the run.py in ./StAR/ensemble. Note the --mode should be alternate in head and tail, and perform a average operation to get the final results.
  • Note: Please replace YOUR_OUTPUT_DIR, TRAINED_MODEL_PATH and StAR_FILE_PATH in ./StAR/peach/common.py with your own paths to run the command and code.
CUDA_VISIBLE_DEVICES=2 python run.py \
--do_train --do_eval --do_prediction --seen_feature \
--mode tail \
--learning_rate 1e-3 \
--feature_method mix \
--neg_times 5 \
--num_train_epochs 3 \
--hinge_loss_margin 0.6 \
--train_batch_size 32 \
--test_batch_size 64 \
--logging_steps 100 \
--save_steps 2000 \
--eval_steps -1 \
--warmup_proportion 0 \
--output_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large_ensemble  \
--dataset_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--context_score_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--translation_score_path /home/wangbo/workspace/StAR_KGC-master/rotate/models/RotatE_wn18rr_0  \
--seed 42 
Owner
Bo Wang
Ph.D. student at the School of Artificial Intelligence, Jilin University.
Bo Wang
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021