Spatial Contrastive Learning for Few-Shot Classification (SCL)

Overview

Spatial Contrastive Learning for Few-Shot Classification (SCL)

Paper 📃

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image classification in order to learn more general purpose embeddings, and facilitate the test-time adaptation to novel visual categories.

Highlights 🔥

(1) Contrastive Learning for Few-Shot Classification.
We explore contrastive learning as an auxiliary pre-training objective to learn more transferable features and facilitate the test time adaptation for few-shot classification.

(2) Spatial Contrastive Learning (SCL).
We propose a novel Spatial Contrastive (SC) loss that promotes the encoding of the relevant spatial information into the learned representations, and further promotes class-independent discriminative patterns.

(3) Contrastive Distillation for Few-Shot Classification.
We introduce a novel contrastive distillation objective to reduce the compactness of the features in the embedding space and provide additional refinement of the representations.

Requirements 🔧

This repo was tested with CentOS 7.7.1908, Python 3.7.7, PyTorch 1.6.0, and CUDA 10.2. However, we expect that the provided code is compatible with older and newer version alike.

The required packages are pytorch and torchvision, together with PIL and sckitlearn for data-preprocessing and evaluation, tqdm for showing the training progress, and some additional modules. To setup the necessary modules, simply run:

pip install -r requirements.txt

Datasets 💽

Standard Few-shot Setting

For the standard few-shot experiments, we used ImageNet derivatives: miniImagetNet and tieredImageNet, in addition to CIFAR-100 derivatives: FC100 and CIFAR-FS. These datasets are preprocessed by the repo of MetaOptNet, renamed and re-uploaded by RFS and can be downloaded from here: [DropBox]

After downloading all of the dataset, and placing them in the same folder which we refer to as DATA_PATH, where each dataset has its specific folder, eg: DATA_PATH/FC100. Then, during training, we can set the training argument data_root to DATA_PATH.

Cross-domain Few-shot Setting

In cross-domain setting, we train on miniImageNet but we test on a different dataset. Specifically, we consider 4 datasets: cub, cars, places and plantae. All of the datasets can be downloaded as follows:

cd dataset/download
python download.py DATASET_NAME DATA_PATH

where DATASET_NAME refers to one of the 4 datasets (cub, cars, places and plantae) and DATA_PATH refers to the path where the data will be downloaded and saved, which can be the path as the standard datasets above.

Running

All of the commands necessary to reproduce the results of the paper can be found in scripts/run.sh.

In general, to use the proposed method for few-shot classification, there is a two stage approach to follows: (1) training the model on the merged meta-training set using train_contrastive.py, then (2) an evaluation setting, where we evaluate the pre-trained embedding model on the meta-testing stage using eval_fewshot.py. Note that we can also apply an optional distillation step after the first pre-training step using train_distillation.py.

Other Use Cases

The proposed SCL method is not specific to few-shot classification, and can also be used for standard supervised or self-supervised training for image classification. For instance, this can be done as follows:

from losses import ContrastiveLoss
from models.attention import AttentionSimilarity

attention_module = AttentionSimilarity(hidden_size=128) # hidden_size depends on the encoder
contrast_criterion = ContrastiveLoss(temperature=10) # inverse temp is used (0.1)

....

# apply some augmentations
aug_inputs1, aug_inputs2 = augment(inputs) 
aug_inputs = torch.cat([aug_inputs1, aug_inputs2], dim=0)

# forward pass
features = encoder(aug_inputs)

# supervised case
loss_contrast = contrast_criterion(features, attention=attention_module, labels=labels)

# unsupervised case
loss_contrast = contrast_criterion(features, attention=attention_module, labels=None)

....

Citation 📝

If you find this repo useful for your research, please consider citing the paper as follows:

@article{ouali2020spatial,
  title={Spatial Contrastive Learning for Few-Shot Classification},
  author={Ouali, Yassine and Hudelot, C{\'e}line and Tami, Myriam},
  journal={arXiv preprint arXiv:2012.13831},
  year={2020}
}

For any questions, please contact Yassine Ouali.

Acknowlegements

  • The code structure is based on RFS repo.
  • The cross-domain datasets code is based on CrossDomainFewShot repo.
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022