๐Ÿ‡ฐ๐Ÿ‡ท Text to Image in Korean

Overview

KoDALLE

Open In Colab Wandb Log

image-20211227151557604

Utilizing pretrained language modelโ€™s token embedding layer and position embedding layer as DALLEโ€™s text encoder.

Background

  • Training DALLE model from scratch demands large size paired dataset of images and captions. For example, OpenAI DALLE is trained with more than 250 million text-image pairs for the training.
  • If the dataset isnโ€™t large enough or is limited to specific domains, number of vocabularies in the trained DALLE model are insufficient. For instance, 1 million text captions of K-Fashion dataset only consists of more or less than 300 tokens.
  • Therefore, inferencing from such DALLE models could be problematic if the given sentence query is unconnected to the originally trained captionsโ€™ text dataset.

KoDALLE's Result on Small Size Fashion Dataset

OpenAIโ€™s DALLE KoDALLE of HappyFace
Train Dataset Size 250 Million Pairs 0.8 Million Pairs
#Params 12 Billion 428 Million
#Layers 64 Layers 16 Layers
Computing Resource 1024 x V100 16GB 1 x V100 32GB
Text Encoder 16384 Vocab x 512 Dim BPE 32000 Vocab x 1024 Dim klue/roberta-large
Image Encoder VQVAE VQGAN
Optimizer AdamW AdamW
Learning Rate 4.5e-5 3.0e-5
Weight Decay 4.5e-3 3.0e-3
LR Scheduler ReduceLROnPlateau -

The team constructed Text to Fashion Design DALLE model in Korean language with less than 100k text-image sampled pairs.

Caption ํ•˜์˜์—์„œ ์ƒ‰์ƒ์€ ์Šค์นด์ด๋ธ”๋ฃจ์ด๋‹ค. ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋กฑ์ด๋‹ค. ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์‹คํฌ์ด๋‹ค. ํ”„๋ฆฐํŠธ์—๋Š” ๋ฌด์ง€์ด๋‹ค. ๋„ฅ๋ผ์ธ์€ ๋ธŒ์ด๋„ฅ์ด๋‹ค. ํ•์€ ๋…ธ๋ฉ€
Generated Image image
Caption ์•„์šฐํ„ฐ๋Š” ์ƒ‰์ƒ์ด ์นดํ‚ค ์†Œ์žฌ๊ฐ€ ์šฐ๋ธ ํ•์ด ๋ฃจ์ฆˆ์ธ ์ฝ”ํŠธ์ด๋‹ค. ํ•˜์˜๋Š” ์ƒ‰์ƒ์ด ๋„ค์ด๋น„ ์†Œ์žฌ๊ฐ€ ๋ฐ๋‹˜ ํ•์ด ์Šคํ‚ค๋‹ˆ์ธ ์ฒญ๋ฐ”์ง€์ด๋‹ค.
Generated Image image
Caption ํ•˜์˜์—์„œ ๊ธฐ์žฅ์€ ๋ฐœ๋ชฉ์ด๋‹ค. ์ƒ‰์ƒ์€ ๋ธ”๋ฃจ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ์Šค์ปคํŠธ์ด๋‹ค. ์†Œ์žฌ์—๋Š” ๋ฐ๋‹˜์ด๋‹ค. ํ•์€ ์™€์ด๋“œ์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์šฐ๋ธ์ด๋‹ค.
Generated Image image
Caption ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋…ธ๋ฉ€์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์ƒ์˜์—์„œ ์„œ๋ธŒ์ƒ‰์ƒ์€ ๋ธ”๋ž™์ด๋‹ค. ์ƒ์˜์—์„œ ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ํ‹ฐ์…”์ธ ์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ์žฌ์—๋Š” ์ €์ง€์ด๋‹ค. ์ƒ์˜์—์„œ ํ”„๋ฆฐํŠธ์—๋Š” ๋ ˆํ„ฐ๋ง์ด๋‹ค. ์ƒ์˜์—์„œ ๋„ฅ๋ผ์ธ์€ ๋ผ์šด๋“œ๋„ฅ์ด๋‹ค. ์ƒ์˜์—์„œ ํ•์€ ๋ฃจ์ฆˆ์ด๋‹ค.
Generated Image image

Methodology

Experimentations were conducted with the following Korean Transformers Modelsโ€™ embedding layers. The team selected klue/roberta-large as baseline in the repository considering the size of the model.

KoDALLE with klue/roberta-large's wpe and wte which is trainable on 16GB GPU Google Colab environment. Hyperparams related to the DALLE's model size are following.

'BATCH_SIZE': 32
'DEPTH': 2
'TEXT_SEQ_LEN': 128
'VOCAB_SIZE': 32000
'MODEL_DIM': 1024
'ATTN_TYPES': 'full'
'DIM_HEAD': 64
'HEADS': 8

Significance

  • Offers promising result for training from scratch on specific domains with small size dataset.
  • Introduces solution for domain specific DALLE & CLIP models to be robust on input sentence.
  • Recommends adequate text-to-image model size for given computation resource.
  • Suggests effortless method of creating DALLE & CLIP model for own languages if pretrained language model is available.

WIP

  • Add image-caption reranker(EfficientNet + Klue/roberta-large)
  • Model trained with 500k text-image pairs.
  • Modulize in python code.
  • Update Inference code.
  • Update FID and IS metrics on test and validation dataset.
You might also like...
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Comments
  • Koclip apply in KoDALLE

    Koclip apply in KoDALLE

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    add) model.py

    ํ˜„์ˆ˜๋‹˜์˜ KoCLIP์ด DALLE Roberta ์—์„œ ์ž‘๋™ํ•˜๊ฒŒ๋” ์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•œ ํŒŒ์ผ์ž…๋‹ˆ๋‹ค.

    dev branch์— ์กด์žฌํ•˜๋Š” model.py ๋น„๊ตํ•˜๋ฉด์„œ ์ˆ˜์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

    add) generate.ipynb

    KoCLIP์ด ์ž‘๋™ํ•˜๋Š”๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“  ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค.

    opened by JoonHong-Kim 1
  • add: KoCLIP codes

    add: KoCLIP codes

    ๋ณ€๊ฒฝ์‚ฌํ•ญ:

    refactor) clipmodel.py

    • CLIPModel ์ตœ์ข… ๋ฒ„์ „์œผ๋กœ ์ˆ˜์ •
    • clip folder๋กœ ์ด๋™

    add) clip/train_clip.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค

    add) clip/dataloader.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ dataloader ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
    opened by shawnhyeonsoo 0
  • add skip_sample in TextImageDataset

    add skip_sample in TextImageDataset

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    modify) loader.py

    • TextImageDataset์—์„œ texts, image๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ๋•Œ, data๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์—๋Ÿฌ ์ฒ˜๋ฆฌ
    • skip_sample ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ error๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ, random ํ˜น์€ ๋‹ค์Œ index๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ skip
    • ๊ธฐ์กด train_dalle_gpt_roberta.py๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜์ •
    opened by jjonhwa 0
Releases(v0.1.0-beta)
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Repo 4 basic seminar ยงHow to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 โ— ์ฃผ์ œ ์„ค๋ช… COVID-19 Pandemic ์ƒํ™ฉ ์† ๋งˆ์Šคํฌ ์ฐฉ์šฉ ์œ ๋ฌด ํŒ๋‹จ ์‹œ์Šคํ…œ ๊ตฌ์ถ• ๋งˆ์Šคํฌ ์ฐฉ์šฉ ์—ฌ๋ถ€, ์„ฑ๋ณ„, ๋‚˜์ด ์ด ์„ธ๊ฐ€์ง€ ๊ธฐ์ค€์— ๋”ฐ๋ผ ์ด 18๊ฐœ์˜ class๋กœ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ชจ๋ธ ?

6 Mar 17, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schrรถter 292 Dec 25, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernรกndez Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video ๐Ÿ“น Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022