Some toy examples of score matching algorithms written in PyTorch

Overview

toy_gradlogp

This repo implements some toy examples of the following score matching algorithms in PyTorch:

Installation

Basic requirements:

  • Python >= 3.6
  • TensorFlow >= 2.3.0
  • PyTorch >= 1.8.0

Install from PyPI

pip install toy_gradlogp

Or install the latest version from this repo

pip install git+https://github.com.Ending2015a/[email protected]

Examples

The examples are placed in toy_gradlogp/run/

Train an energy model

Run ssm-vr on 2spirals dataset (don't forget to add --gpu to enable gpu)

python -m toy_gradlogp.run.train_energy --gpu --loss ssm-vr --data 2spirals

To see the full options, type --help command:

python -m toy_gradlogp.run.train_energy --help
usage: train_energy.py [-h] [--logdir LOGDIR]
                       [--data {8gaussians,2spirals,checkerboard,rings}]
                       [--loss {ssm-vr,ssm,deen,dsm}]
                       [--noise {radermacher,sphere,gaussian}] [--lr LR]
                       [--size SIZE] [--eval_size EVAL_SIZE]
                       [--batch_size BATCH_SIZE] [--n_epochs N_EPOCHS]
                       [--n_slices N_SLICES] [--n_steps N_STEPS] [--eps EPS]
                       [--gpu] [--log_freq LOG_FREQ] [--eval_freq EVAL_FREQ]
                       [--vis_freq VIS_FREQ]

optional arguments:
  -h, --help            show this help message and exit
  --logdir LOGDIR
  --data {8gaussians,2spirals,checkerboard,rings}
                        dataset
  --loss {ssm-vr,ssm,deen,dsm}
                        loss type
  --noise {radermacher,sphere,gaussian}
                        noise type
  --lr LR               learning rate
  --size SIZE           dataset size
  --eval_size EVAL_SIZE
                        dataset size for evaluation
  --batch_size BATCH_SIZE
                        training batch size
  --n_epochs N_EPOCHS   number of epochs to train
  --n_slices N_SLICES   number of slices for sliced score matching
  --n_steps N_STEPS     number of steps for langevin dynamics
  --eps EPS             noise scale for langevin dynamics
  --gpu                 enable gpu
  --log_freq LOG_FREQ   logging frequency (unit: epoch)
  --eval_freq EVAL_FREQ
                        evaluation frequency (unit: epoch)
  --vis_freq VIS_FREQ   visualization frequency (unit: epoch)

Results

Tips: The larger density has a lower energy!

8gaussians

Algorithm Results
ssm-vr
ssm
deen
dsm

2spirals

Algorithm Results
ssm-vr
ssm
deen
dsm

checkerboard

Algorithm Results
ssm-vr
ssm
deen
dsm

rings

Algorithm Results
ssm-vr
ssm
deen
dsm
Owner
Ending Hsiao
Garbage collector
Ending Hsiao
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022