Disagreement-Regularized Imitation Learning

Overview

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in codebase for where the bug was fixed at. [link]

Disagreement-Regularized Imitation Learning

Code to train the models described in the paper "Disagreement-Regularized Imitation Learning", by Kianté Brantley, Wen Sun and Mikael Henaff.

Usage:

Install using pip

Install the DRIL package

pip install -e .

Software Dependencies

"stable-baselines", "rl-baselines-zoo", "baselines", "gym", "pytorch", "pybullet"

Data

We provide a python script to generate expert data from per-trained models using the "rl-baselines-zoo" repository. Click "Here" to see all of the pre-trained agents available and their respective perfromance. Replace <name-of-environment> with the name of the pre-trained agent environment you would like to collect expert data for.

python -u generate_demonstration_data.py --seed <seed-number> --env-name <name-of-environment> --rl_baseline_zoo_dir <location-to-top-level-directory>

Training

DRIL requires a per-trained ensemble model and a per-trained behavior-cloning model.

Note that <location-to-rl-baseline-zoo-directory> is the full-path to the top-level directory to the rl_baseline_zoo repository.

To train only a behavior-cloning model run:

python -u main.py --env-name <name-of-environment> --num-trajs <number-of-trajectories> --behavior_cloning --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>'

To train only a ensemble model run:

python -u main.py --env-name <name-of-environment> --num-trajs <number-of-trajectories> --pretrain_ensemble_only --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>'

To train a DRIL model run the command below. Note that command below first checks that both the behavior cloning model and the ensemble model are trained, if they are not the script will automatically train both the ensemble and behavior-cloning model.

python -u main.py --env-name <name-of-environment> --default_experiment_params <type-of-env>  --num-trajs <number-of-trajectories> --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>  --dril 

--default_experiment_params are the default parameters we use in the DRIL experiments and has two options: atari and continous-control

Visualization

After training the models, the results are stored in a folder called trained_results. Run the command below to reproduce the plots in our paper. If you change any of the hyperparameters, you will need to change the hyperparameters in the plot file naming convention.

python -u plot.py -env <name-of-environment>

Empirical evaluation

Atari

Results on Atari environments. Empirical evaluation

Continous Control

Results on continuous control tasks. Empirical evaluation

Acknowledgement:

We would like to thank Ilya Kostrikov for creating this "repo" that our codebase builds on.

Owner
Kianté Brantley
PhD student at University of Maryland | Member of @umdclip, @coralumbc and @CILVRatNYU | Fitness enthusiast | (He/Him)
Kianté Brantley
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022