Node-level Graph Regression with Deep Gaussian Process Models

Overview

Node-level Graph Regression with Deep Gaussian Process Models

Prerequests

our implementation is mainly based on tensorflow 1.x and gpflow 1.x:

python 3.x (3.7 tested)
conda install tensorflow-gpu==1.15
pip install keras==2.3.1
pip install gpflow==1.5
pip install gpuinfo

Besides, some basic packages like numpy are also needed. It's maybe easy to wrap the codes for TF2.0 and GPflow2, but it's not tested yet.

Specification

Source code and experiment result are both provided. Unzip two archive files before using experiment notebooks.

Files

  • dgp_graph/: cores codes of the DGPG model.
    • impl_parallel.py: a fast node-level computation parallelized implementation, invoked by all experiments.
    • my_op.py: some custom tensorflow operations used in the implementation.
    • impl.py: a basic loop-based implementation, easy to understand but not practical, leaving just for calibration.
  • data/: datasets.
  • doubly_stochastic_dgp/: codes from repository DGP
  • compatible/: codes to make the DGP source codes compatible with gpflow1.5.
  • gpflow_monitor/: monitoring tool for gpflow models, from this repo.
  • GRN inference: code and data for the GRN inference experiment.
  • demo_city45.ipynb: jupyter notebooks for city45 dataset experiment.
  • experiments.zip: jupyter notebooks for other experiments.
  • results.zip: contains original jupyter notebooks results. (exported as HTML files for archive)
  • run_toy.sh: shell script to run additional experiment.
  • toy_main.py: code for additional experiment (Traditional ML methods and DGPG with linear kernel).
  • ER-0.1.ipynb: example script for analyzing time-varying graph structures.

Experiments

The experiments are based on python src files and demonstrated by jupyter notebooks. The source of an experiment is under directory src/experiments.zip and the corresponding result is exported as a static HTML file stored in the directory results.zip. They are organized by dataset names:

  1. Synthetic Datasets

For theoretical analysis.

  • demo_toy_run1.ipynb

  • demo_toy_run2.ipynb

  • demo_toy_run3.ipynb

  • demo_toy_run4.ipynb

  • demo_toy_run5.ipynb

For graph signal analysis on time-varying graphs.

  • ER-0.05.ipynb

  • ER-0.2.ipynb

  • RWP-0.1.ipynb

  • RWP-0.2.ipynb

  • RWP-0.3.ipynb

  1. Small Datasets
  • demo_city45.ipynb
  • demo_city45_linear.ipynb (linear kernel)
  • demo_city45_baseline.ipynb (traditional regression methods)
  • demo_etex.ipynb
  • demo_etex_linear.ipynb
  • demo_etex_baseline.ipynb
  • demo_fmri.ipynb
  • demo_fmri_linear.ipynb
  • demo_fmri_baseline.ipynb
  1. Large Datasets (traffic flow prediction)
  • LA
    • demo_la_15min.ipynb
    • demo_la_30min.ipynb
    • demo_la_60min.ipynb
  • BAY
    • demo_bay_15min.ipynb
    • demo_bay_30min.ipynb
    • demo_bay_60min.ipynb
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Vikrant Deshpande 1 Nov 17, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022