This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

Overview

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging

To appear on KDD'21...[pdf]

This project provides an unsupervised framework for mining and tagging quality phrases on text corpora. In this work, we recognize the power of pretrained language models in identifying the structure of a sentence. The attention matrices generated by a Transformer model are informative to distinguish quality phrases from ordinary spans, as illustrated in the following example.

drawing

With a lightweight CNN model to capture inter-word relationships from various ranges, we can effectively tackle the task of phrase tagging as a multi-channel image classifiaction problem.

For model training, we seek to alleviate the need for human annotation and external knowledge bases. Instead, we show that sufficient supervision can be directly mined from large-scale unlabeled corpus. Specifically, we mine frequent max patterns with each document as context, since by definition, high-quality phrases are sequences that are consistently used in context. Compared with labels generated by distant supervision, silver labels mined from the corpus itself preserve better diversity, coverage, and contextual completeness. The superiority is supported by comparison on two public datasets.

image

We compare our method with existing ones on the KP20k dataset (publication data from CS domain) and the KPTimes dataset (news articles). UCPhrase significantly outperforms prior arts without supervision. Compared with off-the-shelf phrase tagging tools, UCPhrase also shows unique advantages, especially in its ability to generalize to specific domains without reliance on manually curated labels or KBs. We provide comprehensive case studies to demonstrate the comparison among different tagging methods. We also have some interesting findings in the discussion sections.

We aim to build UCPhrase as a practical tool for phrase tagging, though it is certainly far from perfect. Please feel free to try on your own corpus and give us feedbacks if you have any ideas that can help build better phrase tagging tools!

Facts: UCPhrase is a joint work by researchers from UI at Urbana Champaign, and University of California San Diago.

Quick Start

Step 1: Download and unzip the data folder

wget https://www.dropbox.com/s/1bv7dnjawykjsji/data.zip?dl=0 -O data.zip
unzip -n data.zip

Step 2: Install and compile dependencies

bash build.sh

Step 3: Run experiments

cd src
python exp.py --gpu 0 --dir_data ../data/devdata

Model checkpoint and output files will be stored under the generated "experiments" folder.

Citation

If you find the implementation useful, please consider citing the following paper:

Xiaotao Gu*, Zihan Wang*, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang, "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging", in Proc. of 2021 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'21), Aug. 2021

Owner
Xiaotao Gu
Ph.D. student in CS.
Xiaotao Gu
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023