This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

Overview

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging

To appear on KDD'21...[pdf]

This project provides an unsupervised framework for mining and tagging quality phrases on text corpora. In this work, we recognize the power of pretrained language models in identifying the structure of a sentence. The attention matrices generated by a Transformer model are informative to distinguish quality phrases from ordinary spans, as illustrated in the following example.

drawing

With a lightweight CNN model to capture inter-word relationships from various ranges, we can effectively tackle the task of phrase tagging as a multi-channel image classifiaction problem.

For model training, we seek to alleviate the need for human annotation and external knowledge bases. Instead, we show that sufficient supervision can be directly mined from large-scale unlabeled corpus. Specifically, we mine frequent max patterns with each document as context, since by definition, high-quality phrases are sequences that are consistently used in context. Compared with labels generated by distant supervision, silver labels mined from the corpus itself preserve better diversity, coverage, and contextual completeness. The superiority is supported by comparison on two public datasets.

image

We compare our method with existing ones on the KP20k dataset (publication data from CS domain) and the KPTimes dataset (news articles). UCPhrase significantly outperforms prior arts without supervision. Compared with off-the-shelf phrase tagging tools, UCPhrase also shows unique advantages, especially in its ability to generalize to specific domains without reliance on manually curated labels or KBs. We provide comprehensive case studies to demonstrate the comparison among different tagging methods. We also have some interesting findings in the discussion sections.

We aim to build UCPhrase as a practical tool for phrase tagging, though it is certainly far from perfect. Please feel free to try on your own corpus and give us feedbacks if you have any ideas that can help build better phrase tagging tools!

Facts: UCPhrase is a joint work by researchers from UI at Urbana Champaign, and University of California San Diago.

Quick Start

Step 1: Download and unzip the data folder

wget https://www.dropbox.com/s/1bv7dnjawykjsji/data.zip?dl=0 -O data.zip
unzip -n data.zip

Step 2: Install and compile dependencies

bash build.sh

Step 3: Run experiments

cd src
python exp.py --gpu 0 --dir_data ../data/devdata

Model checkpoint and output files will be stored under the generated "experiments" folder.

Citation

If you find the implementation useful, please consider citing the following paper:

Xiaotao Gu*, Zihan Wang*, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang, "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging", in Proc. of 2021 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'21), Aug. 2021

Owner
Xiaotao Gu
Ph.D. student in CS.
Xiaotao Gu
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023