data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

Related tags

Deep LearningC2F-FWN
Overview

C2F-FWN

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"
(https://arxiv.org/abs/2012.08976)

News

2020.12.16: Our paper is available on [ArXiv] now!
2020.12.28: Our SoloDance Dataset is available on [google drive] and [baidu pan (extraction code:gle4] now!
2020.12.28: A preview version of our code is now available, which needs further clean-up.

Example Results

  • motion transfer videos

  • multi-source appearance attribute editing videos

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU (>12GB memory) + CUDA10 cuDNN7
  • PyTorch 1.0.0

Other Dependencies

DConv (modified from original [DConv])

cd models/dconv
bash make.sh

FlowNet_v2 (directly ported from the original [flownet2] following the steps described in [vid2vid])

cd models/flownet2-pytorch
bash install.sh

Getting Started

It's a preview version of our source code. We will clean it up in the near future.

Notes

  1. Main functions for training and testing can be found in "train_stage1.py", "train_stage2.py", "train_stage2.py", "test_all_stages.py";
  2. Data preprocessings of all the stages can be found in "data" folder;
  3. Model definitions of all the stages can be found in "models" folder;
  4. Training and testing options can be found in "options" folder;
  5. Training and testing scripts can be found in "scripts" folder;
  6. Tool functions can be found in "util" folder.

Data Preparation

Download all the data packages from [google drive] or [baidu pan (extraction code:gle4], and uncompress them. You should create a directory named 'SoloDance' in the root (i.e., 'C2F-FWN') of this project, and then put 'train' and 'test' folders to 'SoloDance' you just created. The structure should look like this:
-C2F-FWN
---SoloDance
------train
------test

Training

1.Train the layout GAN of stage 1:

bash scripts/stage1/train_1.sh

2.Train our C2F-FWN of stage 2:

bash scripts/stage2/train_2_tps_only.sh
bash scripts/stage2/train_2.sh

3.Train the composition GAN of stage 3:

bash scripts/stage3/train_3.sh

Testing all the stages together (separate testing scripts for different stages will be updated in the near future)

bash scripts/full/test_full.sh

Acknowledgement

A large part of the code is borrowed from NVIDIA/vid2vid. Thanks for their wonderful works.

Citation

If you find this project useful for your research, please cite our paper using the following BibTeX entry.

@article{wei2020c2f,
  title={C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer},
  author={Wei, Dongxu and Xu, Xiaowei and Shen, Haibin and Huang, Kejie},
  journal={arXiv preprint arXiv:2012.08976},
  year={2020}
}
Owner
EKILI
interests: computer vision email: [email protected]
EKILI
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023