TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

Overview

TransPrompt

This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification》.

Our proposed TransPrompt is motivated by the join of prompt-tuning and cross-task transfer learning. The aim is to explore and exploit the transferable knowledge from similar tasks in the few-shot scenario, and make the Pre-trained Language Model (PLM) better few-shot transfer learner. Our proposed framework is accepted by the main conference (long paper track) in EMNLP-2021. This code is the default multi-GPU version. We will teach you how to use our code in the following parts.

Ps: We also commit the same code in Alibaba EasyTransfer.

1. Data Preparation

We follow PET to use the same dataset. Please run the scripts to download the data:

sh data/download_data.sh

or manually download the dataset from https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar.

Then you will obtain a new director data/original

Our work has two kind of scenario, such as single-task and cross-task. Different kind scenario has corresponding splited examples. Defaultly, we generate few-shot learning examples, you can also generate full data by edit the parameter (-scene=full). We only demostrate the few-shot data generation.

1.1 Single-task Few-shot

Please run the scripts to obtain the single-task few-shot examples:

python3 data_utils/generate_k_shot_data.py --scene few-shot --k 16

Then you will obtain a new folder data/k-shot-single

1.2 Cross-task Few-shot

Run the scripts

python3 data_utils/generate_k_shot_cross_task_data.py --scene few-shot --k 16

and you will obtain a new folder data/k-shot-cross

After the generation, the similar tasks will be divided into the same group. We have three groups:

  • Group1 (Sentiment Analysis): SST-2, MR, CR
  • Group2 (Natural Language Inference): MNLI, SNLI
  • Group3 (Paraphrasing): MRPC, QQP

2. Have a Training Games

Please follow our papers, we have mask following experiments:

  • Single-task few-shot learning: It is the same as LM-BFF and P-tuning, we prompt-tune the PLM only on one task.
  • Cross-task few-shot learning: We mix up the similar task in group. At first, we prompt-tune the PLM on cross-task data, then we prompt-tune on each task again. For the Cross-task Learning, we have two cross-task method:
  • (Cross-)Task Adaptation: In one group, we prompt-tune on all the tasks, and then evaluate on each task both in few-shot scenario.
  • (Cross-)Task Generalization: In one group, we randomly choose one task for few-shot evaluation (do not used for training), others are used for prompt-tuning.

2.1 Single-task few-shot learning

Take MRPC as an example, please run:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_single_task.sh

figure1.png

2.2 Cross-task few-shot Learning (Task Adaptaion)

Take Group1 as an example, please run the scripts:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_adaptation.sh

figure2.png

2.3 Cross-task few-shot Learning (Task Generalization)

Also take Group1 as an example, please run the scripts: Ps: the unseen task is SST-2.

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_generalization.sh

figure3.png

Citation

Our paper citation is:

@inproceedings{DBLP:conf/emnlp/0001WQH021,
  author    = {Chengyu Wang and
               Jianing Wang and
               Minghui Qiu and
               Jun Huang and
               Ming Gao},
  editor    = {Marie{-}Francine Moens and
               Xuanjing Huang and
               Lucia Specia and
               Scott Wen{-}tau Yih},
  title     = {TransPrompt: Towards an Automatic Transferable Prompting Framework
               for Few-shot Text Classification},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural
               Language Processing, {EMNLP} 2021, Virtual Event / Punta Cana, Dominican
               Republic, 7-11 November, 2021},
  pages     = {2792--2802},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://aclanthology.org/2021.emnlp-main.221},
  timestamp = {Tue, 09 Nov 2021 13:51:50 +0100},
  biburl    = {https://dblp.org/rec/conf/emnlp/0001WQH021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Acknowledgement

The code is developed based on pet. We appreciate all the authors who made their code public, which greatly facilitates this project. This repository would be continuously updated.

Owner
WangJianing
My name is Wang Jianing.Nowadays I am a postgraduate of East China Normal University in Shanghai.My research field is Machine Learning;Deep Learning and NLP
WangJianing
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022