TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

Overview

TransPrompt

This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification》.

Our proposed TransPrompt is motivated by the join of prompt-tuning and cross-task transfer learning. The aim is to explore and exploit the transferable knowledge from similar tasks in the few-shot scenario, and make the Pre-trained Language Model (PLM) better few-shot transfer learner. Our proposed framework is accepted by the main conference (long paper track) in EMNLP-2021. This code is the default multi-GPU version. We will teach you how to use our code in the following parts.

Ps: We also commit the same code in Alibaba EasyTransfer.

1. Data Preparation

We follow PET to use the same dataset. Please run the scripts to download the data:

sh data/download_data.sh

or manually download the dataset from https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar.

Then you will obtain a new director data/original

Our work has two kind of scenario, such as single-task and cross-task. Different kind scenario has corresponding splited examples. Defaultly, we generate few-shot learning examples, you can also generate full data by edit the parameter (-scene=full). We only demostrate the few-shot data generation.

1.1 Single-task Few-shot

Please run the scripts to obtain the single-task few-shot examples:

python3 data_utils/generate_k_shot_data.py --scene few-shot --k 16

Then you will obtain a new folder data/k-shot-single

1.2 Cross-task Few-shot

Run the scripts

python3 data_utils/generate_k_shot_cross_task_data.py --scene few-shot --k 16

and you will obtain a new folder data/k-shot-cross

After the generation, the similar tasks will be divided into the same group. We have three groups:

  • Group1 (Sentiment Analysis): SST-2, MR, CR
  • Group2 (Natural Language Inference): MNLI, SNLI
  • Group3 (Paraphrasing): MRPC, QQP

2. Have a Training Games

Please follow our papers, we have mask following experiments:

  • Single-task few-shot learning: It is the same as LM-BFF and P-tuning, we prompt-tune the PLM only on one task.
  • Cross-task few-shot learning: We mix up the similar task in group. At first, we prompt-tune the PLM on cross-task data, then we prompt-tune on each task again. For the Cross-task Learning, we have two cross-task method:
  • (Cross-)Task Adaptation: In one group, we prompt-tune on all the tasks, and then evaluate on each task both in few-shot scenario.
  • (Cross-)Task Generalization: In one group, we randomly choose one task for few-shot evaluation (do not used for training), others are used for prompt-tuning.

2.1 Single-task few-shot learning

Take MRPC as an example, please run:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_single_task.sh

figure1.png

2.2 Cross-task few-shot Learning (Task Adaptaion)

Take Group1 as an example, please run the scripts:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_adaptation.sh

figure2.png

2.3 Cross-task few-shot Learning (Task Generalization)

Also take Group1 as an example, please run the scripts: Ps: the unseen task is SST-2.

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_generalization.sh

figure3.png

Citation

Our paper citation is:

@inproceedings{DBLP:conf/emnlp/0001WQH021,
  author    = {Chengyu Wang and
               Jianing Wang and
               Minghui Qiu and
               Jun Huang and
               Ming Gao},
  editor    = {Marie{-}Francine Moens and
               Xuanjing Huang and
               Lucia Specia and
               Scott Wen{-}tau Yih},
  title     = {TransPrompt: Towards an Automatic Transferable Prompting Framework
               for Few-shot Text Classification},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural
               Language Processing, {EMNLP} 2021, Virtual Event / Punta Cana, Dominican
               Republic, 7-11 November, 2021},
  pages     = {2792--2802},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://aclanthology.org/2021.emnlp-main.221},
  timestamp = {Tue, 09 Nov 2021 13:51:50 +0100},
  biburl    = {https://dblp.org/rec/conf/emnlp/0001WQH021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Acknowledgement

The code is developed based on pet. We appreciate all the authors who made their code public, which greatly facilitates this project. This repository would be continuously updated.

Owner
WangJianing
My name is Wang Jianing.Nowadays I am a postgraduate of East China Normal University in Shanghai.My research field is Machine Learning;Deep Learning and NLP
WangJianing
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022