A brand new hub for Scene Graph Generation methods based on MMdetection (2021). The pipeline of from detection, scene graph generation to downstream tasks (e.g., image cpationing) is supported. Pytorch version implementation of HetH (ECCV 2020) and TopicSG (ICCV 2021) is included.

Overview

MMSceneGraph

LICENSE Python PyTorch

Introduction

MMSceneneGraph is an open source code hub for scene graph generation as well as supporting downstream tasks based on the scene graph on PyTorch. The frontend object detector is supported by open-mmlab/mmdetection.

demo image

Major features

  • Modular design

    We decompose the framework into different components and one can easily construct a customized scene graph generation framework by combining different modules.

  • Support of multiple frameworks out of box

    The toolbox directly supports popular and contemporary detection frameworks, e.g. Faster RCNN, Mask RCNN, etc.

  • Visualization support

    The visualization of the groundtruth/predicted scene graph is integrated into the toolbox.

License

This project is released under the MIT license.

Changelog

Please refer to CHANGELOG.md for details.

Benchmark and model zoo

The original object detection results and models provided by mmdetection are available in the model zoo. The models for the scene graph generation are temporarily unavailable yet.

Supported methods and Datasets

Supported SGG (VRD) methods:

  • Neural Motifs (CVPR'2018)
  • VCTree (CVPR'2019)
  • TDE (CVPR'2020)
  • VTransE (CVPR'2017)
  • IMP (CVPR'2017)
  • KERN (CVPR'2019)
  • GPSNet (CVPR'2020)
  • HetH (ECCV'2020, ours)
  • TopicSG (ICCV'2021, ours)

Supported saliency object detection methods:

  • R3Net (IJCAI'2018)
  • SCRN (ICCV'2019)

Supported image captioning methods:

  • bottom-up (CVPR'2018)
  • XLAN (CVPR'2020)

Supported datasets:

  • Visual Genome: VG150 (CVPR'2017)
  • VRD (ECCV'2016)
  • Visual Genome: VG200/VG-KR (ours)
  • MSCOCO (for object detection, image caption)
  • RelCap (from VG and COCO, ours)

Installation

As our project is built on mmdetection 1.x (which is a bit different from their current master version 2.x), please refer to INSTALL.md. If you want to use mmdetection 2.x, please refer to mmdetection/get_start.md.

Getting Started

Please refer to GETTING_STARTED.md for using the projects. We will update it constantly.

Acknowledgement

We appreciate the contributors of the mmdetection project and Scene-Graph-Benchmark.pytorch which inspires our design.

Citation

If you find this code hub or our works useful in your research works, please consider citing:

@inproceedings{wang2021topic,
  title={Topic Scene Graph Generation by Attention Distillation from Caption},
  author={Wang, Wenbin and Wang, Ruiping and Chen, Xilin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  pages={15900--15910},
  month = {October},
  year={2021}
}


@inproceedings{wang2020sketching,
  title={Sketching Image Gist: Human-Mimetic Hierarchical Scene Graph Generation},
  author={Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
  booktitle={Proceedings of European Conference on Computer Vision (ECCV)},
  pages={222--239},
  year={2020},
  volume={12358},
  doi={10.1007/978-3-030-58601-0_14},
  publisher={Springer}
}

@InProceedings{Wang_2019_CVPR,
author = {Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
title = {Exploring Context and Visual Pattern of Relationship for Scene Graph Generation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {8188-8197},
month = {June},
address = {Long Beach, California, USA},
doi = {10.1109/CVPR.2019.00838},
year = {2019}
}
Owner
Kenneth-Wong
http://www.kennethwong.tech/
Kenneth-Wong
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Akshat Surolia 2 May 11, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022