DeepVoxels is an object-specific, persistent 3D feature embedding.

Overview

DeepVoxels

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of an object in a deeplearning framework. At test time, the training set can be discarded, and DeepVoxels can be used to render novel views of the same object.

deepvoxels_video

Usage

Installation

This code was developed in python 3.7 and pytorch 1.0. I recommend to use anaconda for dependency management. You can create an environment with name "deepvoxels" with all dependencies like so:

conda env create -f environment.yml

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • data_util.py and util.py contain utility functions.
  • run_deepvoxels.py contains the training and testing code as well as setting up the dataset, dataloading, command line arguments etc.
  • deep_voxels.py contains the core DeepVoxels model.
  • custom_layers.py contains implementations of the integration and occlusion submodules.
  • projection.py contains utility functions for 3D and projective geometry.

Data

The datasets have been rendered from a set of high-quality 3D scans of a variety of objects. The datasets are available for download here. Each object has its own directory, which is the directory that the "data_root" command-line argument of the run_deepvoxels.py script is pointed to.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

The code also reads an "intrinsics.txt" file from the dataset directory. This file is expected to be structured as follows:

f cx cy
origin_x origin_y origin_z
near_plane (if 0, defaults to sqrt(3)/2)
scale
img_height img_width

The focal length, cx and cy are in pixels. (origin_x, origin_y, origin_z) denotes the origin of the voxel grid in world coordinates. The near plane is also expressed in world units. Per default, each voxel has a sidelength of 1 in world units - the scale is a factor that scales the sidelength of each voxel. Finally, height and width are the resolution of the image.

To create your own dataset, I recommend using the amazing, open-source Colmap. Follow the instructions on the website to install it. I have written a little wrapper in python that will automatically reconstruct a directory of images, and then extract the camera extrinsic & intrinsic camera parameters. It can be used like so:

python colmap_wrapper.py --img_dir [path to directory with images] \
                         --trgt_dir [path where output will be written to] 

To get the scale and origin of the voxel grid as well as the near plane, one has to inspect the reconstructed point cloud and manually edit the intrinsics.txt file written out by colmap_wrapper.py.

Training

  • See python run_deepvoxels.py --help for all train options. Example train call:
python run_deepvoxels.py --train_test train \
                         --data_root [path to directory with dataset] \
                         --logging_root [path to directory where tensorboard summaries and checkpoints should be written to] 

To monitor progress, the training code writes tensorboard summaries every 100 steps into a "runs" subdirectory in the logging_root.

Testing

Example test call:

python run_deepvoxels.py --train_test test \
                         --data_root [path to directory with dataset] ]
                         --logging_root [path to directoy where test output should be written to] \
                         --checkpoint [path to checkpoint]

Misc

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{sitzmann2019deepvoxels,
	author = {Sitzmann, Vincent 
	          and Thies, Justus 
	          and Heide, Felix 
	          and Nie{\ss}ner, Matthias 
	          and Wetzstein, Gordon 
	          and Zollh{\"o}fer, Michael},
	title = {DeepVoxels: Learning Persistent 3D Feature Embeddings},
	booktitle = {Proc. CVPR},
	year={2019}
}

Follow-up work

Check out our new project, Scene Representation Networks, where we replace the voxel grid with a continuous function that naturally generalizes across scenes and smoothly parameterizes scene surfaces!

Submodule "pytorch_prototyping"

The code in the subdirectory "pytorch_prototyping" comes from a little library of custom pytorch modules that I use throughout my research projects. You can find it here.

Other cool projects

Some of the code in this project is based on code from these two very cool papers:

Check them out!

Contact:

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022