DeepVoxels is an object-specific, persistent 3D feature embedding.

Overview

DeepVoxels

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of an object in a deeplearning framework. At test time, the training set can be discarded, and DeepVoxels can be used to render novel views of the same object.

deepvoxels_video

Usage

Installation

This code was developed in python 3.7 and pytorch 1.0. I recommend to use anaconda for dependency management. You can create an environment with name "deepvoxels" with all dependencies like so:

conda env create -f environment.yml

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • data_util.py and util.py contain utility functions.
  • run_deepvoxels.py contains the training and testing code as well as setting up the dataset, dataloading, command line arguments etc.
  • deep_voxels.py contains the core DeepVoxels model.
  • custom_layers.py contains implementations of the integration and occlusion submodules.
  • projection.py contains utility functions for 3D and projective geometry.

Data

The datasets have been rendered from a set of high-quality 3D scans of a variety of objects. The datasets are available for download here. Each object has its own directory, which is the directory that the "data_root" command-line argument of the run_deepvoxels.py script is pointed to.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

The code also reads an "intrinsics.txt" file from the dataset directory. This file is expected to be structured as follows:

f cx cy
origin_x origin_y origin_z
near_plane (if 0, defaults to sqrt(3)/2)
scale
img_height img_width

The focal length, cx and cy are in pixels. (origin_x, origin_y, origin_z) denotes the origin of the voxel grid in world coordinates. The near plane is also expressed in world units. Per default, each voxel has a sidelength of 1 in world units - the scale is a factor that scales the sidelength of each voxel. Finally, height and width are the resolution of the image.

To create your own dataset, I recommend using the amazing, open-source Colmap. Follow the instructions on the website to install it. I have written a little wrapper in python that will automatically reconstruct a directory of images, and then extract the camera extrinsic & intrinsic camera parameters. It can be used like so:

python colmap_wrapper.py --img_dir [path to directory with images] \
                         --trgt_dir [path where output will be written to] 

To get the scale and origin of the voxel grid as well as the near plane, one has to inspect the reconstructed point cloud and manually edit the intrinsics.txt file written out by colmap_wrapper.py.

Training

  • See python run_deepvoxels.py --help for all train options. Example train call:
python run_deepvoxels.py --train_test train \
                         --data_root [path to directory with dataset] \
                         --logging_root [path to directory where tensorboard summaries and checkpoints should be written to] 

To monitor progress, the training code writes tensorboard summaries every 100 steps into a "runs" subdirectory in the logging_root.

Testing

Example test call:

python run_deepvoxels.py --train_test test \
                         --data_root [path to directory with dataset] ]
                         --logging_root [path to directoy where test output should be written to] \
                         --checkpoint [path to checkpoint]

Misc

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{sitzmann2019deepvoxels,
	author = {Sitzmann, Vincent 
	          and Thies, Justus 
	          and Heide, Felix 
	          and Nie{\ss}ner, Matthias 
	          and Wetzstein, Gordon 
	          and Zollh{\"o}fer, Michael},
	title = {DeepVoxels: Learning Persistent 3D Feature Embeddings},
	booktitle = {Proc. CVPR},
	year={2019}
}

Follow-up work

Check out our new project, Scene Representation Networks, where we replace the voxel grid with a continuous function that naturally generalizes across scenes and smoothly parameterizes scene surfaces!

Submodule "pytorch_prototyping"

The code in the subdirectory "pytorch_prototyping" comes from a little library of custom pytorch modules that I use throughout my research projects. You can find it here.

Other cool projects

Some of the code in this project is based on code from these two very cool papers:

Check them out!

Contact:

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022