Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

Overview

MOS-Multi-Task-Face-Detect

Introduction

This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation". The paper has been accepted at BMVC2021.

This repo is an implementation of PyTorch. MOS is a low latency and lightweight architecture for face detection, facial landmark localization and head pose estimation.It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

Updates

  • 【2021/10/31】 We have released the training data (widerface with pose label). The pytorch inference code of MOS-S and MOS-M has been released!
  • 【2021/10/22】 We have released our paper on Arxiv.
  • 【2021/10/15】 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation" has been accepted at BMVC2021.

Comming soon

  • Tensorrt inference code.
  • Openvino inference code.
  • Ncnn inference code.
  • The fastest version: MOS-tiny.

Benchmark

Light Models.

WiderFace Val Performance is in multi scale and Pose evaluation is using AFLW2000 in 300X300 as image input.

Model backbone easy medium hard pitch yaw roll
MOS-M mobilenetV2 94.08 93.21 88.06 6.67 4.43 5.83
MOS-S shufflenetV2 93.28 92.12 86.97 6.80 4.28 5.99

generate widerface validation results

  1. Generate txt file You need download the validation and test dataset of WiderFace from Here
python test_widerface.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
  1. Evaluate txt results. Demo come from Here
cd ./widerface_evaluate
python setup.py build_ext --inplace
python evaluation.py

Training data

  1. Download annotations (face bounding boxes & five facial landmarks & pose angle(pitch,yaw,roll)) from baidu cloud , the code is 0925. We also provide the GOOGLE DRIVE
  2. Organise the dataset directory as follows:
  ./data/widerface/
    train/
      images/
      label.txt

The annotation file is like:

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82 -6 -6 1

face_x face_y face_width face_height landmark1.x landmark1.y 0.0 landmark2.x landmark2.y 0.0 landmark3.x landmark3.y 0.0 landmark4.x landmark4.y 0.0
landmark5.x landmark5.y 0.0 confidence pitch yaw roll

Quick Start

Installation

Step1. Install MOS.

git clone https://github.com/lyp-deeplearning/MOS-Multi-Task-Face-Detect.git
cd MOS-Multi-Task-Face-Detect
conda create -n MOS python=3.8.5
conda activate MOS
pip install -r requirements.txt
cd models/DCNv2/
python setup.py build develop

Step2. Run Pytorch inference demo.

## run the MOS-M model 
python detect_picture.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth
## run the MOS-S model
python detect_picture.py --network cfg_mos_s --trained_model ./test_weights/MOS-S.pth

Step3. Run video inference demo.

## run the MOS-M model 
python detect_video.py --network cfg_mos_m --trained_model ./test_weights/MOS-M.pth

Cite MOS

If you use MOS in your research, please cite our work by using the following BibTeX entry:

@article{liu2021mos,
  title={MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation},
  author={Liu, Yepeng and Gu, Zaiwang and Gao, Shenghua and Wang, Dong and Zeng, Yusheng and Cheng, Jun},
  journal={arXiv preprint arXiv:2110.10953},
  year={2021}
}
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022