[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

Overview

CrowdNav with Social-NCE

This is an official implementation for the paper

Social NCE: Contrastive Learning of Socially-aware Motion Representations
by Yuejiang Liu, Qi Yan, Alexandre Alahi at EPFL
to appear at ICCV 2021

TL;DR: Contrastive Representation Learning + Negative Data Augmentations 🡲 Robust Neural Motion Models

Please check out our code for experiments on different models as follows:
Social NCE + CrowdNav | Social NCE + Trajectron | Social NCE + STGCNN

Preparation

Setup environments follwoing the SETUP.md

Training & Evaluation

  • Behavioral Cloning (Vanilla)
    python imitate.py --contrast_weight=0.0 --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-baseline-data-0.50/policy_net.pth
    
  • Social-NCE + Conventional Negative Sampling (Local)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='local' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-local-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0-range-2.00/policy_net.pth
    
  • Social-NCE + Safety-driven Negative Sampling (Ours)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='event' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-event-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0/policy_net.pth
    
  • Method Comparison
    bash script/run_vanilla.sh && bash script/run_local.sh && bash script/run_snce.sh
    python utils/compare.py
    

Basic Results

Results of behavioral cloning with different methods.

Averaged results from the 150th to 200th epochs.

collision reward
Vanilla 12.7% ± 3.8% 0.274 ± 0.019
Local 19.3% ± 4.2% 0.240 ± 0.021
Ours 2.0% ± 0.6% 0.331 ± 0.003

Citation

If you find this code useful for your research, please cite our papers:

@article{liu2020snce,
  title   = {Social NCE: Contrastive Learning of Socially-aware Motion Representations},
  author  = {Yuejiang Liu and Qi Yan and Alexandre Alahi},
  journal = {arXiv preprint arXiv:2012.11717},
  year    = {2020}
}
@inproceedings{chen2019crowdnav,
    title={Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning},
    author={Changan Chen and Yuejiang Liu and Sven Kreiss and Alexandre Alahi},
    year={2019},
    booktitle={ICRA}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022