A PyTorch re-implementation of Neural Radiance Fields

Overview

nerf-pytorch

A PyTorch re-implementation

Project | Video | Paper

Open Tiny-NeRF in Colab

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution

A PyTorch re-implementation of Neural Radiance Fields.

Speed matters!

The current implementation is blazing fast! (~5-9x faster than the original release, ~2-4x faster than this concurrent pytorch implementation)

What's the secret sauce behind this speedup?

Multiple aspects. Besides obvious enhancements such as data caching, effective memory management, etc. I drilled down through the entire NeRF codebase, and reduced data transfer b/w CPU and GPU, vectorized code where possible, and used efficient variants of pytorch ops (wrote some where unavailable). But for these changes, everything else is a faithful reproduction of the NeRF technique we all admire :)

Sample results from the repo

On synthetic data

On real data

Tiny-NeRF on Google Colab

The NeRF code release has an accompanying Colab notebook, that showcases training a feature-limited version of NeRF on a "tiny" scene. It's equivalent PyTorch notebook can be found at the following URL:

https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX

What is a NeRF?

A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views.

Optimizing a NeRF takes between a few hours and a day or two (depending on resolution) and only requires a single GPU. Rendering an image from an optimized NeRF takes somewhere between less than a second and ~30 seconds, again depending on resolution.

How to train your NeRF super-quickly!

To train a "full" NeRF model (i.e., using 3D coordinates as well as ray directions, and the hierarchical sampling procedure), first setup dependencies.

Option 1: Using pip

In a new conda or virtualenv environment, run

pip install -r requirements.txt

Option 2: Using conda

Use the provided environment.yml file to install the dependencies into an environment named nerf (edit the environment.yml if you wish to change the name of the conda environment).

conda env create
conda activate nerf

Run training!

Once everything is setup, to run experiments, first edit config/lego.yml to specify your own parameters.

The training script can be invoked by running

python train_nerf.py --config config/lego.yml

Optional: Resume training from a checkpoint

Optionally, if resuming training from a previous checkpoint, run

python train_nerf.py --config config/lego.yml --load-checkpoint path/to/checkpoint.ckpt

Optional: Cache rays from the dataset

An optional, yet simple preprocessing step of caching rays from the dataset results in substantial compute time savings (reduced carbon footprint, yay!), especially when running multiple experiments. It's super-simple: run

python cache_dataset.py --datapath cache/nerf_synthetic/lego/ --halfres False --savedir cache/legocache/legofull --num-random-rays 8192 --num-variations 50

This samples 8192 rays per image from the lego dataset. Each image is 800 x 800 (since halfres is set to False), and 500 such random samples (8192 rays each) are drawn per image. The script takes about 10 minutes to run, but the good thing is, this needs to be run only once per dataset.

NOTE: Do NOT forget to update the cachedir option (under dataset) in your config (.yml) file!

(Full) NeRF on Google Colab

A Colab notebook for the full NeRF model (albeit on low-resolution data) can be accessed here.

Render fun videos (from a pretrained model)

Once you've trained your NeRF, it's time to use that to render the scene. Use the eval_nerf.py script to do that. For the lego-lowres example, this would be

python eval_nerf.py --config pretrained/lego-lowres/config.yml --checkpoint pretrained/lego-lowres/checkpoint199999.ckpt --savedir cache/rendered/lego-lowres

You can create a gif out of the saved images, for instance, by using Imagemagick.

convert cache/rendered/lego-lowres/*.png cache/rendered/lego-lowres.gif

This should give you a gif like this.

A note on reproducibility

All said, this is not an official code release, and is instead a reproduction from the original code (released by the authors here).

The code is thoroughly tested (to the best of my abilities) to match the original implementation (and be much faster)! In particular, I have ensured that

  • Every individual module exactly (numerically) matches that of the TensorFlow implementation. This Colab notebook has all the tests, matching op for op (but is very scratchy to look at)!
  • Training works as expected (for Lego and LLFF scenes).

The organization of code WILL change around a lot, because I'm actively experimenting with this.

Pretrained models: Pretrained models for the following scenes are available in the pretrained directory (all of them are currently lowres). I will continue adding models herein.

# Synthetic (Blender) scenes
chair
drums
hotdog
lego
materials
ship

# Real (LLFF) scenes
fern

Contributing / Issues?

Feel free to raise GitHub issues if you find anything concerning. Pull requests adding additional features are welcome too.

LICENSE

nerf-pytorch is available under the MIT License. For more details see: LICENSE and ACKNOWLEDGEMENTS.

Misc

Also, a shoutout to yenchenlin for his cool PyTorch implementation, whose volume rendering function replaced mine (my initial impl was inefficient in comparison).

Owner
Krishna Murthy
PhD candidate @mila-udem @montrealrobotics. Blending robotics and computer vision with deep learning.
Krishna Murthy
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023