A PyTorch re-implementation of Neural Radiance Fields

Overview

nerf-pytorch

A PyTorch re-implementation

Project | Video | Paper

Open Tiny-NeRF in Colab

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution

A PyTorch re-implementation of Neural Radiance Fields.

Speed matters!

The current implementation is blazing fast! (~5-9x faster than the original release, ~2-4x faster than this concurrent pytorch implementation)

What's the secret sauce behind this speedup?

Multiple aspects. Besides obvious enhancements such as data caching, effective memory management, etc. I drilled down through the entire NeRF codebase, and reduced data transfer b/w CPU and GPU, vectorized code where possible, and used efficient variants of pytorch ops (wrote some where unavailable). But for these changes, everything else is a faithful reproduction of the NeRF technique we all admire :)

Sample results from the repo

On synthetic data

On real data

Tiny-NeRF on Google Colab

The NeRF code release has an accompanying Colab notebook, that showcases training a feature-limited version of NeRF on a "tiny" scene. It's equivalent PyTorch notebook can be found at the following URL:

https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX

What is a NeRF?

A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views.

Optimizing a NeRF takes between a few hours and a day or two (depending on resolution) and only requires a single GPU. Rendering an image from an optimized NeRF takes somewhere between less than a second and ~30 seconds, again depending on resolution.

How to train your NeRF super-quickly!

To train a "full" NeRF model (i.e., using 3D coordinates as well as ray directions, and the hierarchical sampling procedure), first setup dependencies.

Option 1: Using pip

In a new conda or virtualenv environment, run

pip install -r requirements.txt

Option 2: Using conda

Use the provided environment.yml file to install the dependencies into an environment named nerf (edit the environment.yml if you wish to change the name of the conda environment).

conda env create
conda activate nerf

Run training!

Once everything is setup, to run experiments, first edit config/lego.yml to specify your own parameters.

The training script can be invoked by running

python train_nerf.py --config config/lego.yml

Optional: Resume training from a checkpoint

Optionally, if resuming training from a previous checkpoint, run

python train_nerf.py --config config/lego.yml --load-checkpoint path/to/checkpoint.ckpt

Optional: Cache rays from the dataset

An optional, yet simple preprocessing step of caching rays from the dataset results in substantial compute time savings (reduced carbon footprint, yay!), especially when running multiple experiments. It's super-simple: run

python cache_dataset.py --datapath cache/nerf_synthetic/lego/ --halfres False --savedir cache/legocache/legofull --num-random-rays 8192 --num-variations 50

This samples 8192 rays per image from the lego dataset. Each image is 800 x 800 (since halfres is set to False), and 500 such random samples (8192 rays each) are drawn per image. The script takes about 10 minutes to run, but the good thing is, this needs to be run only once per dataset.

NOTE: Do NOT forget to update the cachedir option (under dataset) in your config (.yml) file!

(Full) NeRF on Google Colab

A Colab notebook for the full NeRF model (albeit on low-resolution data) can be accessed here.

Render fun videos (from a pretrained model)

Once you've trained your NeRF, it's time to use that to render the scene. Use the eval_nerf.py script to do that. For the lego-lowres example, this would be

python eval_nerf.py --config pretrained/lego-lowres/config.yml --checkpoint pretrained/lego-lowres/checkpoint199999.ckpt --savedir cache/rendered/lego-lowres

You can create a gif out of the saved images, for instance, by using Imagemagick.

convert cache/rendered/lego-lowres/*.png cache/rendered/lego-lowres.gif

This should give you a gif like this.

A note on reproducibility

All said, this is not an official code release, and is instead a reproduction from the original code (released by the authors here).

The code is thoroughly tested (to the best of my abilities) to match the original implementation (and be much faster)! In particular, I have ensured that

  • Every individual module exactly (numerically) matches that of the TensorFlow implementation. This Colab notebook has all the tests, matching op for op (but is very scratchy to look at)!
  • Training works as expected (for Lego and LLFF scenes).

The organization of code WILL change around a lot, because I'm actively experimenting with this.

Pretrained models: Pretrained models for the following scenes are available in the pretrained directory (all of them are currently lowres). I will continue adding models herein.

# Synthetic (Blender) scenes
chair
drums
hotdog
lego
materials
ship

# Real (LLFF) scenes
fern

Contributing / Issues?

Feel free to raise GitHub issues if you find anything concerning. Pull requests adding additional features are welcome too.

LICENSE

nerf-pytorch is available under the MIT License. For more details see: LICENSE and ACKNOWLEDGEMENTS.

Misc

Also, a shoutout to yenchenlin for his cool PyTorch implementation, whose volume rendering function replaced mine (my initial impl was inefficient in comparison).

Owner
Krishna Murthy
PhD candidate @mila-udem @montrealrobotics. Blending robotics and computer vision with deep learning.
Krishna Murthy
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022