(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Overview

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback


About

This repository accompanies the real-world experiments conducted in the paper "Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback" by Yuta Saito, which has been accepted at SIGIR2020 as a full paper.

If you find this code useful in your research then please cite:

@inproceedings{saito2020asymmetric,
  title={Asymmetric tri-training for debiasing missing-not-at-random explicit feedback},
  author={Saito, Yuta},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2020}
}

Dependencies

  • numpy==1.17.2
  • pandas==0.25.1
  • scikit-learn==0.22.1
  • tensorflow==1.15.2
  • optuna==0.17.0
  • pyyaml==5.1.2

Running the code

To run the simulation with real-world datasets,

  1. download the Coat dataset from https://www.cs.cornell.edu/~schnabts/mnar/ and put train.ascii and test.ascii files into ./data/coat/ directory.
  2. download the Yahoo! R3 dataset from https://webscope.sandbox.yahoo.com/catalog.php?datatype=r and put train.txt and test.txt files into ./data/yahoo/ directory.

Then, run the following commands in the ./src/ directory:

  • for the MF-IPS models without asymmetric tri-training
for data in yahoo coat
do
  for model in uniform user item both nb nb_true
  do
    python main.py -d $data -m $model
  done
done
  • for the MF-IPS models with asymmetric tri-training (our proposal)
for data in coat yahoo
do
  for model in uniform-at user-at item-at both-at nb-at nb_true-at
  do
    python main.py -d $data -m $model
  done
done

where (uniform, user, item, both, nb, nb_true) correspond to (uniform propenisty, user propensity, item propensity, user-item propensity, NB (uniform), NB (true)), respectively.

These commands will run simulations with real-world datasets conducted in Section 5. The tuned hyperparameters for all models can be found in ./hyper_params.yaml.
(By adding the -t option to the above code, you can re-run the hyperparameter tuning procedure by Optuna.)

Once the simulations have finished running, the summarized results can be obtained by running the following command in the ./src/ directory:

python summarize_results -d coat yahoo

This creates ./paper_results/.

Owner
yuta-saito
Incoming CS Ph.D. Student at Cornell University / Co-Founder of Hanjuku-kaso, Co., Ltd.
yuta-saito
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022