(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Overview

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback


About

This repository accompanies the real-world experiments conducted in the paper "Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback" by Yuta Saito, which has been accepted at SIGIR2020 as a full paper.

If you find this code useful in your research then please cite:

@inproceedings{saito2020asymmetric,
  title={Asymmetric tri-training for debiasing missing-not-at-random explicit feedback},
  author={Saito, Yuta},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2020}
}

Dependencies

  • numpy==1.17.2
  • pandas==0.25.1
  • scikit-learn==0.22.1
  • tensorflow==1.15.2
  • optuna==0.17.0
  • pyyaml==5.1.2

Running the code

To run the simulation with real-world datasets,

  1. download the Coat dataset from https://www.cs.cornell.edu/~schnabts/mnar/ and put train.ascii and test.ascii files into ./data/coat/ directory.
  2. download the Yahoo! R3 dataset from https://webscope.sandbox.yahoo.com/catalog.php?datatype=r and put train.txt and test.txt files into ./data/yahoo/ directory.

Then, run the following commands in the ./src/ directory:

  • for the MF-IPS models without asymmetric tri-training
for data in yahoo coat
do
  for model in uniform user item both nb nb_true
  do
    python main.py -d $data -m $model
  done
done
  • for the MF-IPS models with asymmetric tri-training (our proposal)
for data in coat yahoo
do
  for model in uniform-at user-at item-at both-at nb-at nb_true-at
  do
    python main.py -d $data -m $model
  done
done

where (uniform, user, item, both, nb, nb_true) correspond to (uniform propenisty, user propensity, item propensity, user-item propensity, NB (uniform), NB (true)), respectively.

These commands will run simulations with real-world datasets conducted in Section 5. The tuned hyperparameters for all models can be found in ./hyper_params.yaml.
(By adding the -t option to the above code, you can re-run the hyperparameter tuning procedure by Optuna.)

Once the simulations have finished running, the summarized results can be obtained by running the following command in the ./src/ directory:

python summarize_results -d coat yahoo

This creates ./paper_results/.

Owner
yuta-saito
Incoming CS Ph.D. Student at Cornell University / Co-Founder of Hanjuku-kaso, Co., Ltd.
yuta-saito
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022