Unofficial pytorch-lightning implement of Mip-NeRF

Overview

mipnerf_pl

Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided below):

Multi-scale render result

Multi Scale Train And Multi Scale Test Single Scale
PNSR SSIM PSNR SSIM
Full Res 1/2 Res 1/4 Res 1/8 Res Aveage
(PyTorch)
Aveage
(Jax)
Full Res 1/2 Res 1/4 Res 1/8 Res Average
(PyTorch)
Average
(Jax)
Full Res
lego 34.412 35.640 36.074 35.482 35.402 35.736 0.9719 0.9843 0.9897 0.9912 0.9843 0.9843 35.198 0.985

The top image of each column is groundtruth and the bottom image is Mip-NeRF render in different resolutions.

The above results are trained on the lego dataset with 300k steps for single-scale and multi-scale datasets respectively, and the pre-trained model can be found here. Feel free to contribute more datasets.

Installation

We recommend using Anaconda to set up the environment. Run the following commands:

# Clone the repo
git clone https://github.com/hjxwhy/mipnerf_pl.git; cd mipnerf_pl
# Create a conda environment
conda create --name mipnerf python=3.9.12; conda activate mipnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install PyTorch
pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113
# Install requirements
pip install -r requirements.txt

Dataset

Download the datasets from the NeRF official Google Drive and unzip nerf_synthetic.zip. You can generate the multi-scale dataset used in the paper with the following command:

# Generate all scenes
python datasets/convert_blender_data.py --blenderdir UZIP_DATA_DIR --outdir OUT_DATA_DIR
# If you only want to generate a scene, you can:
python datasets/convert_blender_data.py --blenderdir UZIP_DATA_DIR --outdir OUT_DATA_DIR --object_name lego

Running

Train

To train a single-scale lego Mip-NeRF:

# You can specify the GPU numbers and batch size at the end of command,
# such as num_gpus 2 train.batch_size 4096 val.batch_size 8192 and so on.
# More parameters can be found in the configs/lego.yaml file. 
python train.py --out_dir OUT_DIR --data_path UZIP_DATA_DIR --dataset_name blender exp_name EXP_NAME

To train a multi-scale lego Mip-NeRF:

python train.py --out_dir OUT_DIR --data_path OUT_DATA_DIR --dataset_name multi_blender exp_name EXP_NAME

Evaluation

You can evaluate both single-scale and multi-scale models under the eval.sh guidance, changing all directories to your directory. Alternatively, you can use the following command for evaluation.

# eval single scale model
python eval.py --ckpt CKPT_PATH --out_dir OUT_DIR --scale 1 --save_image
# eval multi scale model
python eval.py --ckpt CKPT_PATH --out_dir OUT_DIR --scale 4 --save_image
# summarize the result again if you have saved the pnsr.txt and ssim.txt
python eval.py --ckpt CKPT_PATH --out_dir OUT_DIR --scale 4 --summa_only

Render Spheric Path Video

It also provide a script for rendering spheric path video

# Render spheric video
python render_video.py --ckpt CKPT_PATH --out_dir OUT_DIR --scale 4
# generate video if you already have images
python render_video.py --gen_video_only --render_images_dir IMG_DIR_RENDER

Visualize All Poses

The script modified from nerfplusplus supports visualize all poses which have been reorganized to right-down-forward coordinate. Multi-scale have different camera focal length which is equivalent to different resolutions.

Citation

Kudos to the authors for their amazing results:

@misc{barron2021mipnerf,
      title={Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields},
      author={Jonathan T. Barron and Ben Mildenhall and Matthew Tancik and Peter Hedman and Ricardo Martin-Brualla and Pratul P. Srinivasan},
      year={2021},
      eprint={2103.13415},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Thansks to mipnerf, mipnerf-pytorch, nerfplusplus, nerf_pl

Owner
Jianxin Huang
Jianxin Huang
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022