Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Overview

Gym-TORCS

Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic car racing simulator recently used as RL benchmark task in several AI studies.

Gym-TORCS is the python wrapper of TORCS for RL experiment with the simple interface (similar, but not fully) compatible with OpenAI-gym environments. The current implementaion is for only the single-track race in practie mode. If you want to use multiple tracks or other racing mode (quick race etc.), you may need to modify the environment, "autostart.sh" or the race configuration file using GUI of TORCS.

This code is developed based on vtorcs (https://github.com/giuse/vtorcs) and python-client for torcs (http://xed.ch/project/snakeoil/index.html).

The detailed explanation of original TORCS for AI research is given by Daniele Loiacono et al. (https://arxiv.org/pdf/1304.1672.pdf)

Because torcs has memory leak bug at race reset. As an ad-hoc solution, we relaunch and automate the gui setting in torcs. Any better solution is welcome!

Requirements

We are assuming you are using Ubuntu 14.04 LTS/16.04 LTS machine and installed

Example Code

The example code and agent are written in example_experiment.py and sample_agent.py.

Initialization of the Race

After the insallation of vtorcs-RL-color, you need to initialize the race setting. You can find the detailed explanation in a document (https://arxiv.org/pdf/1304.1672.pdf), but here I show the simple gui-based setting.

So first you need to run

sudo torcs

in the terminal, the GUI of TORCS should be launched. Then, you need to choose the race track by following the GUI (Race --> Practice --> Configure Race) and open TORCS server by selecting Race --> Practice --> New Race. This should result that TORCS keeps a blue screen with several text information.

If you need to treat the vision input in your AI agent, you have to set the small image size in TORCS. To do so, you have to run

python snakeoil3_gym.py

in the second terminal window after you open the TORCS server (just as written above). Then the race starts, and you can select the driving-window mode by F2 key during the race.

After the selection of the driving-window mode, you need to set the appropriate gui size. This is done by using the display option mode in Options --> Display. You can select the Screen Resolution, and you need to select 64x64 for visual input (our immplementation only support this screen size, other screen size results the unreasonable visual information). Then, you need to shut down TORCS to complete the configuration for the vision treatment.

Simple How-To

from gym_torcs import TorcsEnv

#### Generate a Torcs environment
# enable vision input, the action is steering only (1 dim continuous action)
env = TorcsEnv(vision=True, throttle=False)

# without vision input, the action is steering and throttle (2 dim continuous action)
# env = TorcsEnv(vision=False, throttle=True)

ob = env.reset(relaunch=True)  # with torcs relaunch (avoid memory leak bug in torcs)
# ob = env.reset()  # without torcs relaunch

# Generate an agent
from sample_agent import Agent
agent = Agent(1)  # steering only
action = agent.act(ob, reward, done, vision=True)

# single step
ob, reward, done, _ = env.step(action)

# shut down torcs
env.end()

Add Noise in Low-dim Sensors

If you want to apply sensor noise in low-dimensional sensors, you should

os.system('torcs -nofuel -nodamage -nolaptime -vision -noisy &')
os.system('torcs -nofuel -nolaptime -noisy &')

at 33 & 35th lines in gym_torcs.py

Great Application

gym-torcs was utilized in DDPG experiment with Keras by Ben Lau. This experiment is really great!

https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Acknowledgement

gym_torcs was developed during the spring internship 2016 at Preferred Networks.

Owner
naoto yoshida
Ugoku-Namakemono (Moving Sloth). Computational philosopher. Connectionist. Behavior designer of autonomous robots.
naoto yoshida
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022