Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Overview

Gym-TORCS

Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic car racing simulator recently used as RL benchmark task in several AI studies.

Gym-TORCS is the python wrapper of TORCS for RL experiment with the simple interface (similar, but not fully) compatible with OpenAI-gym environments. The current implementaion is for only the single-track race in practie mode. If you want to use multiple tracks or other racing mode (quick race etc.), you may need to modify the environment, "autostart.sh" or the race configuration file using GUI of TORCS.

This code is developed based on vtorcs (https://github.com/giuse/vtorcs) and python-client for torcs (http://xed.ch/project/snakeoil/index.html).

The detailed explanation of original TORCS for AI research is given by Daniele Loiacono et al. (https://arxiv.org/pdf/1304.1672.pdf)

Because torcs has memory leak bug at race reset. As an ad-hoc solution, we relaunch and automate the gui setting in torcs. Any better solution is welcome!

Requirements

We are assuming you are using Ubuntu 14.04 LTS/16.04 LTS machine and installed

Example Code

The example code and agent are written in example_experiment.py and sample_agent.py.

Initialization of the Race

After the insallation of vtorcs-RL-color, you need to initialize the race setting. You can find the detailed explanation in a document (https://arxiv.org/pdf/1304.1672.pdf), but here I show the simple gui-based setting.

So first you need to run

sudo torcs

in the terminal, the GUI of TORCS should be launched. Then, you need to choose the race track by following the GUI (Race --> Practice --> Configure Race) and open TORCS server by selecting Race --> Practice --> New Race. This should result that TORCS keeps a blue screen with several text information.

If you need to treat the vision input in your AI agent, you have to set the small image size in TORCS. To do so, you have to run

python snakeoil3_gym.py

in the second terminal window after you open the TORCS server (just as written above). Then the race starts, and you can select the driving-window mode by F2 key during the race.

After the selection of the driving-window mode, you need to set the appropriate gui size. This is done by using the display option mode in Options --> Display. You can select the Screen Resolution, and you need to select 64x64 for visual input (our immplementation only support this screen size, other screen size results the unreasonable visual information). Then, you need to shut down TORCS to complete the configuration for the vision treatment.

Simple How-To

from gym_torcs import TorcsEnv

#### Generate a Torcs environment
# enable vision input, the action is steering only (1 dim continuous action)
env = TorcsEnv(vision=True, throttle=False)

# without vision input, the action is steering and throttle (2 dim continuous action)
# env = TorcsEnv(vision=False, throttle=True)

ob = env.reset(relaunch=True)  # with torcs relaunch (avoid memory leak bug in torcs)
# ob = env.reset()  # without torcs relaunch

# Generate an agent
from sample_agent import Agent
agent = Agent(1)  # steering only
action = agent.act(ob, reward, done, vision=True)

# single step
ob, reward, done, _ = env.step(action)

# shut down torcs
env.end()

Add Noise in Low-dim Sensors

If you want to apply sensor noise in low-dimensional sensors, you should

os.system('torcs -nofuel -nodamage -nolaptime -vision -noisy &')
os.system('torcs -nofuel -nolaptime -noisy &')

at 33 & 35th lines in gym_torcs.py

Great Application

gym-torcs was utilized in DDPG experiment with Keras by Ben Lau. This experiment is really great!

https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Acknowledgement

gym_torcs was developed during the spring internship 2016 at Preferred Networks.

Owner
naoto yoshida
Ugoku-Namakemono (Moving Sloth). Computational philosopher. Connectionist. Behavior designer of autonomous robots.
naoto yoshida
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023