Transformers are Graph Neural Networks!

Overview

🚀 Gated Graph Transformers

Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression.

Associated article: Transformers are Graph Neural Networks, by Chaitanya K. Joshi, published with The Gradient.

This repository is a continuously updated personal project to build intuitions about and track progress in Graph Representation Learning research. I aim to develop the most universal and powerful model which unifies state-of-the-art architectures from Graph Neural Networks and Transformers, without incorporating domain-specific tricks.

Gated Graph Transformer

Key Architectural Ideas

🤖 Deep, Residual Transformer Backbone

  • As the backbone architecture, I borrow the two-sub-layered, pre-normalization variant of Transformer encoders that has emerged as the standard in the NLP community, e.g. GPT-3. Each Transformer block consists of a message-passing sub-layer followed by a node-wise feedforward sub-layer. The graph convolution is described later.
  • The feedforward sub-layer projects node embeddings to an absurdly large dimension, passes them through a non-linear activation function, does dropout, and reduces back to the original embedding dimension.
  • The Transformer backbone enables training very deep and extremely overparameterized models. Overparameterization is important for performance in NLP and other combinatorially large domains, but was previously not possible for GNNs trained on small graph classifcation datasets. Coupled with unique node positional encodings (described later) and the feedforward sub-layer, overparameterization ensures that our GNN is Turing Universal (based on A. Loukas's recent insightful work, including this paper).

✉️ Anisotropic Graph Convolutions


Source: 'Deep Parametric Continuous Convolutional Neural Networks', Wang et al., 2018

  • As the graph convolution layer, I use the Gated Graph Convolution with dense attention mechanism, which we found to be the best performing graph convolution in Benchmarking GNNs. Intuitively, Gated GraphConv generalizes directional CNN filters for 2D images to arbitrary graphs by learning a weighted aggregations over the local neighbors of each node. It upgrades the node-to-node attention mechanism from GATs and MoNet (i.e. one attention weight per node pair) to consider dense feature-to-feature attention (i.e. d attention weights for pairs of d-dimensional node embeddings).
  • Another intuitive motivation for the Gated GraphConv is as a learnable directional diffusion process over the graph, or as a coupled PDE over node and edge features in the graph. Gated GraphConv makes the diffusion process/neighborhood aggregation anisotropic or directional, countering oversmoothing/oversquashing of features and enabling deeper models.
  • This graph convolution was originally proposed as a sentence encoder for NLP and further developed at NTU for molecule generation and combinatorial optimization. Evidently, I am partial to this idea. At the same time, it is worth noting that anisotropic local aggregations and generalizations of directed CNN filters have demonstrated strong performance across a myriad of applications, including 3D point clouds, drug discovery, material science, and programming languages.

🔄 Graph Positional Encodings


Source: 'Geometric Deep Learning: Going beyond Euclidean Data', Bronstein et al., 2017

  • I use the top-k non-trivial Laplacian Eigenvectors as unique node identifiers to inject structural/positional priors into the Transformer backbone. Laplacian Eigenvectors are a generalization of sinusoidal positional encodings from the original Transformers, and were concurrently proposed in the Benchmarking GNNs, EigenGNNs, and GCC papers.
  • Randomly flipping the sign of Laplacian Eigenvectors during training (due to symmetry) can be seen as an additional data augmentation or regularization technique, helping delay overfitting to training patterns. Going further, the Directional Graph Networks paper presents a more principled approach for using Laplacian Eigenvectors.

Some ideas still in the pipeline include:

  • Graph-specific Normalization - Originally motivated in Benchmarking GNNs as 'graph size normalization', there have been several subsequent graph-specific normalization techniques such as GraphNorm and MessageNorm, aiming to replace or augment standard Batch Normalization. Intuitively, there is room for improvement as BatchNorm flattens mini-batches of graphs instead of accounting for the underlying graph structure.

  • Theoretically Expressive Aggregation - There are several exciting ideas aiming to bridge the gap between theoretical expressive power, computational feasability, and generalization capacity for GNNs: PNA-style multi-head aggregation and scaling, generalized aggreagators from DeeperGCNs, pre-computing structural motifs as in GSN, etc.

  • Virtual Node and Low Rank Global Attention - After the message-passing step, the virtual node trick adds messages to-and-fro a virtual/super node connected to all graph nodes. LRGA comes with additional theretical motivations but does something similar. Intuitively, these techniques enable modelling long range or latent interactions in graphs and counter the oversquashing problem with deeper networks.

  • General Purpose Pre-training - It isn't truly a Transformer unless its pre-trained on hundreds of GPUs for thousands of hours...but general purpose pre-training for graph representation learning remains an open question!

Installation and Usage

# Create new Anaconda environment
conda create -n new-env python=3.7
conda activate new-env
# Install PyTorch 1.6 for CUDA 10.x
conda install pytorch=1.6 cudatoolkit=10.x -c pytorch
# Install DGL for CUDA 10.x
conda install -c dglteam dgl-cuda10.x
# Install other dependencies
conda install tqdm scikit-learn pandas urllib3 tensorboard
pip install -U ogb

# Train GNNs on ogbg-mol* datasets
python main_mol.py --dataset [ogbg-molhiv/ogbg-molpcba] --gnn [gated-gcn/gcn/mlp]

# Prepare submission for OGB leaderboards
bash scripts/ogbg-mol*.sh

# Collate results for submission
python submit.py --dataset [ogbg-molhiv/ogbg-molpcba] --expt [path-to-logs]

Note: The code was tested on Ubuntu 16.04, using Python 3.6, PyTorch 1.6 and CUDA 10.1.

Citation

@article{joshi2020transformers,
  author = {Joshi, Chaitanya K},
  title = {Transformers are Graph Neural Networks},
  journal = {The Gradient},
  year = {2020},
  howpublished = {\url{https://thegradient.pub/transformers-are-gaph-neural-networks/ } },
}
Owner
Chaitanya Joshi
Research Engineer at A*STAR, working on Graph Neural Networks
Chaitanya Joshi
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022