A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

Overview

Explorer Demo

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks.

Thanks for NVlabs' excellent work.

Features

Explorer

See how the result image response to changes of latent code & psi.

Projector Demo 1

Projector

Test the projection from image to latent code. Left is target image, right is result from generator model. Total step count and yielding interval can be configured in this page. And another hyperparameter regularize noise weight can be configured statically, see Environment Configurations.

You can save the projection result in a zip package, and this page can accept projector zip file dropping, so this feature enable you to share your projector result to others.

Projector Demo 1 Projector Demo 2

W latent space extension

We added an env switch of UNIFORM_LATENTS to denote using uniform or separated W latent code when projecting image. This is the results comparison (center is the target):

W latents result   ⇨   target image   ⇦   W+ latents result

Projection animation exporting

You can also export image projection result sequence as a gif animation:

  ⇦  

Face image pose alignment

Dataset of FFHQ's generation has a crop process to align face area.see paper, appendix C. So the output distribution of StyleGAN model learned on FFHQ has a strong prior tendency on features position. We observed that many face images projection suffers semantic mistakes, e.g. erasing original eyes and transforming eyebrow into eyes during projection fitting (however you can get a similar face at last, but it may yield freak results when you manipulate the latent code). Finally we figured out that mainly caused by unalignment with training dataset prior distribution.

Then we import the face-api to measure and align human face images as below:

- 🙂 - ✄ →

Gratefulness for the authorization by @芈砾 to use his nice opus.

Click the button [ 🙂 ] after target image loaded, if the face detection succeed, you will get the face landmark and proposed crop box. The detection result may be not very accurate, now you can adjust 3 anchor marks manually to align left eye (red), right eye (green) and mouth (blue). Then click button [✄] to apply the crop.

Merger

Once you get some latent codes by projector or turning, you can test to mix features by interpolating latent values on every W layer. This is a demo.

Merger Demo

The pair of top-left images are the source to merge, press Ctrl+V in the hash box below either image to paste input latent code via clipboard, and Ctrl+C on the right blank area to copy result latent code.

Mapping Network Research

mapping plot

I attempt to explore the StyleGAN mapping network high-dimensional terrain aspect, read this article for details.

Usage

Run the web server:

python ./http_server.py

If this works, open http://localhost:8186 in your browser.

To ensure it working, please read the following requirements before do this.

Requirements

Python

Install requirement libraries with pip, reference to requirements.txt.

Network Files

Before run the web server, StyleGAN2 pre-trained network files must be placed in local disk (recommended the folder models). You can download network files following to StyleGAN2's code.

For memory reason, only one generator model can be loaded when running the web server. Network file paths can be configured by env variables. Create a file named .env.local under project root to configure chosen model and network file paths. Network file name/paths are configured in key-value style, e.g.:

MODEL_NAME=ffhq		# ffhq is the default value, so this line can be ignored 

MODEL_PATH_ffhq=./models/stylegan2-ffhq-config-f.pkl
MODEL_PATH_cat=./models/stylegan2-cat-config-f.pkl
# And so on...

Alternately, you can also choose generator model name by start command argument, e.g.:

python ./http_server.py cat

Or, for nodejs developer:

yarn start cat

Besides generators, the network LPIPS is required when run image projector, the default local path is ./models/vgg16_zhang_perceptual.pkl, download link. You can also change local path by env variable MODEL_PATH_LPIPS.

For Windows

According to StyleGAN2 README.md, here are our additional help instructions:

  • MSVC

    NOTE: Visual Studio 2019 Community Edition seems not compatible with CUDA 10.0, Visual Studio 2017 works.

    Append the actual msvc binary directory (find in your own disk) into dnnlib/tflib/custom_ops.py, the array of compiler_bindir_search_path. For example:

     -	'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
     +	'C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC/Tools/MSVC/14.16.27023/bin/Hostx64/x64',
  • NVCC

    To test if nvcc is configured properly, dowload test_nvcc.cu in StyleGAN2 project. And the test command should specify binary path:

     nvcc test_nvcc.cu -o test_nvcc -run -ccbin "C:\Program Files (x86)\Microsoft VisualStudio\2017\BuildTools\VC\Tools\MSVC\14.16.27023\bin\Hostx64\x64"

    Actual path to different msvc edition may have difference in detail. If this succeed, it will build a file named test_nvcc.exe.

  • Tips for tensorflow 1.15

    Tensorflow 1.15 can work under Windows, but NVCC compiling may encounter C++ including path problem. Here is an easy workaround: make a symbolic link in python installation directory Python36\Lib\site-packages\tensorflow_core:

     mklink /J tensorflow tensorflow_core
  • Tips for tensorflow 2.x

    Tensorflow 2.0+ can work now! I have solved the compatibility issues with TF2 already, including some modification of code bundled in pickle. Except one problem on Windows, if you encountered this:

    C:/Users/xxx/AppData/Local/Programs/Python/Python36/lib/site-packages/tensorflow/include\unsupported/Eigen/CXX11/Tensor(74): fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory

    Just open this file and comment out this line simply:

    #include

    It seems a bug of tensorflow, and I have committed an issue for them.

  • cudafe++ issue

    If you encountered python console error like:

     nvcc error : 'cudafe++' died with status 0xC0000005 (ACCESS_VIOLATION)
    

    That may caused by a bug from CUDA 10.0, you can fix this issue by replacing your cudafe++.exe file in CUDA program bin directory by the same name file from CUDA 10.1 or higher version. And you are welcome to download my backup to avoid install a whole new version CUDA.

Environment Configurations

To manage environment variables conveniently, create a configuration file named .env.local. All avaiable env list:

Key Description Default Value
HTTP_HOST Web server host. 127.0.0.1
HTTP_PORT Web server port. 8186
MODEL_NAME Name for the generator model to load, this can be overwrite by the first argument of start script. ffhq
MODEL_PATH_LPIPS File path for LPIPS model. ./models/vgg16_zhang_perceptual.pkl
MODEL_PATH_* Generator network file path dictionary. See examples.
REGULARIZE_NOISE_WEIGHT Projector training hyperparameter. Float. 1e5
INITIAL_NOISE_FACTOR Projector training hyperparameter. Float. 0.05
EUCLIDEAN_DIST_WEIGHT Projector training hyperparameter. Float. 1
REGULARIZE_MAGNITUDE_WEIGHT Projector training hyperparameter. Float. 0
UNIFORM_LATENTS Use uniform latents for all feature layers (consistent with origin StyleGAN2 paper). Boolean, 0 or 1 0

 

 

 

A Bonus :)

Owner
K.L.
K.L.
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022