A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

Overview

🤖 Interactive Machine Learning Experiments

This is a collection of interactive machine-learning experiments. Each experiment consists of 🏋️ Jupyter/Colab notebook (to see how a model was trained) and 🎨 demo page (to see a model in action right in your browser).


⚠️ This repository contains machine learning experiments and not a production ready, reusable, optimised and fine-tuned code and models. This is rather a sandbox or a playground for learning and trying different machine learning approaches, algorithms and data-sets. Models might not perform well and there is a place for overfitting/underfitting.

Experiments

Most of the models in these experiments were trained using TensorFlow 2 with Keras support.

Supervised Machine Learning

Supervised learning is when you have input variables X and an output variable Y and you use an algorithm to learn the mapping function from the input to the output: Y = f(X). The goal is to approximate the mapping function so well that when you have new input data X that you can predict the output variables Y for that data. It is called supervised learning because the process of an algorithm learning from the training dataset can be thought of as a teacher supervising the learning process.

Multilayer Perceptron (MLP) or simple Neural Network (NN)

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN). Multilayer perceptrons are sometimes referred to as "vanilla" neural networks (composed of multiple layers of perceptrons), especially when they have a single hidden layer. It can distinguish data that is not linearly separable.

Experiment Model demo & training Tags Dataset
Handwritten digits recognition (MLP) Handwritten Digits Recognition (MLP) Launch demo Open in Binder Open in Colab MLP MNIST
Handwritten sketch recognition (MLP) Handwritten Sketch Recognition (MLP) Launch demo Open in Binder Open in Colab MLP QuickDraw

Convolutional Neural Networks (CNN)

A convolutional neural network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery (photos, videos). They are used for detecting and classifying objects on photos and videos, style transfer, face recognition, pose estimation etc.

Experiment Model demo & training Tags Dataset
Handwritten digits recognition (CNN) Handwritten Digits Recognition (CNN) Launch demo Open in Binder Open in Colab CNN MNIST
Handwritten sketch recognition (CNN) Handwritten Sketch Recognition (CNN) Launch demo Open in Binder Open in Colab CNN QuickDraw
Rock Paper Scissors Rock Paper Scissors (CNN) Launch demo Open in Binder Open in Colab CNN RPS
Rock Paper Scissors Rock Paper Scissors (MobilenetV2) Launch demo Open in Binder Open in Colab MobileNetV2, Transfer learning, CNN RPS , ImageNet
Objects detection Objects Detection (MobileNetV2) Launch demo Open in Binder Open in Colab MobileNetV2, SSDLite, CNN COCO
Objects detection Image Classification (MobileNetV2) Launch demo Open in Binder Open in Colab MobileNetV2, CNN ImageNet

Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) is a class of deep neural networks, most commonly applied to sequence-based data like speech, voice, text or music. They are used for machine translation, speech recognition, voice synthesis etc.

Experiment Model demo & training Tags Dataset
Numbers summation (RNN) Numbers Summation (RNN) Launch demo Open in Binder Open in Colab LSTM, Sequence-to-sequence Auto-generated
Shakespeare Text Generation (RNN) Shakespeare Text Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Shakespeare
Wikipedia Text Generation (RNN) Wikipedia Text Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Wikipedia
Recipe Generation (RNN) Recipe Generation (RNN) Launch demo Open in Binder Open in Colab LSTM, Character-based RNN Recipe box

Unsupervised Machine Learning

Unsupervised learning is when you only have input data X and no corresponding output variables. The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data. These are called unsupervised learning because unlike supervised learning above there is no correct answers and there is no teacher. Algorithms are left to their own to discover and present the interesting structure in the data.

Generative Adversarial Networks (GANs)

A generative adversarial network (GAN) is a class of machine learning frameworks where two neural networks contest with each other in a game. Two models are trained simultaneously by an adversarial process. For example a generator ("the artist") learns to create images that look real, while a discriminator ("the art critic") learns to tell real images apart from fakes.

Experiment Model demo & training Tags Dataset
Clothes Generation (DCGAN) Clothes Generation (DCGAN) Launch demo Open in Binder Open in Colab DCGAN Fashion MNIST

How to use this repository locally

Setup virtual environment for Experiments

# Create "experiments" environment (from the project root folder).
python3 -m venv .virtualenvs/experiments

# Activate environment.
source .virtualenvs/experiments/bin/activate
# or if you use Fish...
source .virtualenvs/experiments/bin/activate.fish

To quit an environment run deactivate.

Install dependencies

# Upgrade pip and setuptools to the latest versions.
pip install --upgrade pip setuptools

# Install packages
pip install -r requirements.txt

To install new packages run pip install package-name. To add new packages to the requirements run pip freeze > requirements.txt.

Launch Jupyter locally

In order to play around with Jupyter notebooks and see how models were trained you need to launch a Jupyter Notebook server.

# Launch Jupyter server.
jupyter notebook

Jupyter will be available locally at http://localhost:8888/. Notebooks with experiments may be found in experiments folder.

Launch demos locally

Demo application is made on React by means of create-react-app.

# Switch to demos folder from project root.
cd demos

# Install all dependencies.
yarn install

# Start demo server on http. 
yarn start

# Or start demo server on https (for camera access in browser to work on localhost).
yarn start-https

Demos will be available locally at http://localhost:3000/ or at https://localhost:3000/.

Convert models

The converter environment is used to convert the models that were trained during the experiments from .h5 Keras format to Javascript understandable formats (tfjs_layers_model or tfjs_graph_model formats with .json and .bin files) for further usage with TensorFlow.js in Demo application.

# Create "converter" environment (from the project root folder).
python3 -m venv .virtualenvs/converter

# Activate "converter" environment.
source .virtualenvs/converter/bin/activate
# or if you use Fish...
source .virtualenvs/converter/bin/activate.fish

# Install converter requirements.
pip install -r requirements.converter.txt

The conversion of keras models to tfjs_layers_model/tfjs_graph_model formats is done by tfjs-converter:

For example:

tensorflowjs_converter --input_format keras \
  ./experiments/digits_recognition_mlp/digits_recognition_mlp.h5 \
  ./demos/public/models/digits_recognition_mlp

⚠️ Converting the models to JS understandable formats and loading them to the browser directly might not be a good practice since in this case the user might need to load tens or hundreds of megabytes of data to the browser which is not efficient. Normally the model is being served from the back-end (i.e. TensorFlow Extended) and instead of loading it all to the browser the user will do a lightweight HTTP request to do a prediction. But since the Demo App is just an experiment and not a production-ready app and for the sake of simplicity (to avoid having an up and running back-end) we're converting the models to JS understandable formats and loading them directly into the browser.

Requirements

Recommended versions:

  • Python: > 3.7.3.
  • Node: >= 12.4.0.
  • Yarn: >= 1.13.0.

In case if you have Python version 3.7.3 you might experience RuntimeError: dictionary changed size during iteration error when trying to import tensorflow (see the issue).

You might also be interested in

Articles

Supporting the project

You may support this project via ❤️ GitHub or ❤️ Patreon.

Owner
Oleksii Trekhleb
Sr Software Engineer at @uber
Oleksii Trekhleb
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022