The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Overview

Timescale NFT Starter Kit

The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

The NFT Starter Kit will give you a foundation for analyzing NFT trends so that you can bring some data to your purchasing decisions, or just learn about the NFT space from a data-driven perspective. It also serves as a solid foundation for your more complex NFT analysis projects in the future.

We recommend following along with the NFT Starter Kit tutorial to get familar with the contents of this repository.

For more information about the NFT Starter Kit, see the announcement blog post.

Project components

Earn a Time Travel Tiger NFT

Time Travel Tigers is a collection of 20 hand-crafted NFTs featuring Timescale’s mascot: Eon the friendly tiger, as they travel through space and time, spreading the word about time-series data wearing various disguises to blend in. The first 20 people to complete the NFT Starter Kit tutorial can earn a limited edition NFT from the collection, for free! Simply download the NFT Starter Kit, complete the tutorial and fill out this form, and we’ll send one of the limited-edition Eon NFTs to your ETH address (at no cost to you!).

Get started

Clone the nft-starter-kit repository:

git clone https://github.com/timescale/nft-starter-kit.git
cd nft-starter-kit

Setting up the pre-built Superset dashboards

This part of the project is fully Dockerized. TimescaleDB and the Superset dashboard is built out automatically using docker-compose. After completing the steps below, you will have a local TimescaleDB and Superset instance running in containers - containing 500K+ NFT transactions from OpenSea.

The Docker service uses port 8088 (for Superset) and 6543 (for TimescaleDB) so make sure there's no other services using those ports before starting the installation process.

Prerequisites

  • Docker

  • Docker compose

    Verify that both are installed:

    docker --version && docker-compose --version

Instructions

  1. Run docker-compose up --build in the /pre-built-dashboards folder:

    cd pre-built-dashboards
    docker-compose up --build

    See when the process is done (it could take a couple of minutes):

    timescaledb_1      | PostgreSQL init process complete; ready for start up.
  2. Go to http://0.0.0.0:8088/ in your browser and login with these credentials:

    user: admin
    password: admin
    
  3. Open the Databases page inside Superset (http://0.0.0.0:8088/databaseview/list/). You will see exactly one item there called NFT Starter Kit.

  4. Click the edit button (pencil icon) on the right side of the table (under "Actions").

  5. Don't change anything in the popup window, just click Finish. This will make sure the database can be reached from Superset.

  6. Go check out your NFT dashboards!

    Collections dashboard: http://0.0.0.0:8088/superset/dashboard/1

    Assets dashboard: http://0.0.0.0:8088/superset/dashboard/2

Running the data ingestion script

If you'd like to ingest data into your database (be it a local TimescaleDB, or in Timescale Cloud) straight from the OpenSea API, follow these steps to configure the ingestion script:

Prerequisites

Instructions

  1. Go to the root folder of the project:
    cd nft-starter-kit
  2. Create a new Python virtual environment and install the requirements:
    virtualenv env && source env/bin/activate
    pip install -r requirements.txt
  3. Replace the parameters in the config.py file:
    DB_NAME="tsdb"
    HOST="YOUR_HOST_URL"
    USER="tsdbadmin"
    PASS="YOUR_PASSWORD_HERE"
    PORT="PORT_NUMBER"
    OPENSEA_START_DATE="2021-10-01T00:00:00" # example start date (UTC)
    OPENSEA_END_DATE="2021-10-06T23:59:59" # example end date (UTC)
  4. Run the Python script:
    python opensea_ingest.py
    This will start ingesting data in batches, ~300 rows at a time:
    Start ingesting data between 2021-10-01 00:00:00+00:00 and 2021-10-06 23:59:59+00:00
    ---
    Fetching transactions from OpenSea...
    Data loaded into temp table!
    Data ingested!
    Data has been backfilled until this time: 2021-10-06 23:51:31.140126+00:00
    ---
    You can stop the ingesting process anytime (Ctrl+C), otherwise the script will run until all the transactions have been ingested from the given time period.

Ingest the sample data

If you don't want to spend time waiting until a decent amount of data is ingested, you can just use our sample dataset which contains 500K+ sale transactions from OpenSea (this sample was used for the Superset dashboard as well)

Prerequisites

Instructions

  1. Go to the folder with the sample CSV files (or you can also download them from here):
    cd pre-built-dashboards/database/data
  2. Connect to your database with PSQL:
    psql -x "postgres://host:port/tsdb?sslmode=require"
    If you're using Timescale Cloud, the instructions under How to Connect provide a customized command to run to connect directly to your database.
  3. Import the CSV files in this order (it can take a few minutes in total):
    \copy accounts FROM 001_accounts.csv CSV HEADER;
    \copy collections FROM 002_collections.csv CSV HEADER;
    \copy assets FROM 003_assets.csv CSV HEADER;
    \copy nft_sales FROM 004_nft_sales.csv CSV HEADER;
  4. Try running some queries on your database:
    SELECT count(*), MIN(time) AS min_date, MAX(time) AS max_date FROM nft_sales 
This is a small repository for me to implement my simply Data Visualisation skills through Python.

Data Visualisations This is a small repository for me to implement my simply Data Visualisation skills through Python. Steam Population Chart from 10/

9 Dec 31, 2021
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Visualizations of linear algebra algorithms for people who want a deep understanding

Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t

ogogmad 3 May 05, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI

Data-Visualization-Projects Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI Indigenous-Brands-Social-Movements Pyt

Jinwoo(Roy) Yoon 1 Feb 05, 2022
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022
Render tokei's output to interactive sunburst chart.

Render tokei's output to interactive sunburst chart.

134 Dec 15, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
📊 Extensions for Matplotlib

📊 Extensions for Matplotlib

Nico Schlömer 519 Dec 30, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023