Automate the case review on legal case documents and find the most critical cases using network analysis

Overview

Automation on Legal Court Cases Review

This project is to automate the case review on legal case documents and find the most critical cases using network analysis.

Short write-up

Affiliation: Institute for Social and Economic Research and Policy, Columbia University

Project Information:

Keywords: Automation, PDF parse, String Extraction, Network Analysis

Software:

  • Python : pdfminer, LexNLP, nltk sklearn
  • R: igraph

Scope:

  1. Parse court documents, extract citations from raw text.
  2. Build citation network, identify important cases in the network.
  3. Extract judge's opinion text and meta information including opinion author, court, decision.
  4. Model training to predict court decision based on opinion text.

Polit Study on 159 Legal Court Documents (in pilot_159 folder)

1. Process PDF documents using Python

Ipython Notebook Description
1.Extraction by LexNLP.ipynb Extract meta inforation use LexNLP package.
2.Layer Analysis on Sigle File. ipynb Use pdfminer to extract the raw text and the paragraph segamentation in the PDF document.
3.Patent Position by Layer.ipynb Identify the position of patent number in extracted layers from PDF.
4.Opinion and Author by Layer.ipynb Extract opinion text, author, decisions from the layers list.
5.Wrap up to Meta Data.ipynb Store extracted meta data to .json or .csv
6.Visualize citation frequency.ipynb Bar plot of the citation frequencies

2. Data: Parse PDF documents via Python

These datasets are NOT included in this public repository for intellectual property and privacy concern

File
pdf2text159.json A dictionary of 3 list: file_name, raw_text, layers.
cite_edge159.csv Edge list of citation network
cite_node159.csv Meta information of each case: case_number, court, dates
reference_extract.csv cited cases in a list for every case, untidy format for analysis
citation159.csv file citation pair, tidy format for calculation
regulation159.csv file regulation pair, tidy format for calculation

3. Analyze and Visualize using R

File
Calculate Citation Frequency.Rmd Analyze reference_extract.csv
Citation Network.Rmd Analyze cite_edge159

4. Visulization Chart Sample

Citation Frequencycase_freq

Citation Networkcitation_net

Network Visulization and Predictive Modeling on 854 Legal Court Cases (in Extraction_Modelling folder)

1. Extract opinion and meta information from raw text data

.ipynb notebook Description
Full Dataset Merge.ipynb Merge the 854 cases dataset
Edge and Node List.ipynb Create edge and node list
Full Extractions.ipynb Extract author, judge panel, opinion text
Clean Opinion Text.ipynb Remove references and special characters in opinion text

2. Datasets

These datasets are NOT included in this public repository for intellectual property and privacy concern

Dataset Description
amy_cases.json large dictionary {file name: raw text} for 854 cases, from Lilian's PDF parsing
full_name_text.json convert amy_cases.json key value pair to two list: file_name, raw_text
cite_edge.csv edge list of citation
cite_node.csv node list contains case_code, case_name, court_from, court_type
extraction854.csv full extractions include case_code, case_name, court_from, court_type, result, author, judge_panel
decision_text.json json file include author, decision(result of the case), opinion (opinion text), cleaned_text (cleaned opinion text)
cleaned_text.csv csv file contains allt the cleaned text
predict_data.csv cleaned dataset for NLP modeling predict court decision

3. Visulization using R

R markdown file
Full Network Graph.Rmd draw the full citation network
Citation Betwwen Nodes.Rmd draw citation between all the available cases
Clean Data For Predictive Modelling.rmd clean text data for predictive modeling

Interactive Graph

Play with Interactive Graph

Full Citation Network (all cases and cited cases)

Citation Between Available Cases

4. Predictive Modeling using Python

ipynb notebook
NLP Predictive Modeling.ipynb Try different preprocessing, and build a logistic regression to predict court decision.

Visulization of the Bi-gram (words) with the strongest coefficient

Bigram

Owner
Yi Yin
Tech & Business Alignment @ Wolfram Research, Social Sciences Research @ Columbia University
Yi Yin
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Andrew Tavis McAllister 0 Jul 09, 2022
WhatsApp Chat Analyzer is a WebApp and it can be used by anyone to analyze their chat. 😄

WhatsApp-Chat-Analyzer You can view the working project here. WhatsApp chat Analyzer is a WebApp where anyone either tech or non-tech person can analy

Prem Chandra Singh 26 Nov 02, 2022
nvitop, an interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management

An interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management.

Xuehai Pan 1.3k Jan 02, 2023
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
A little logger for machine learning research

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

Reinforcement Learning Working Group 27 Dec 03, 2022
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
View part of your screen in grayscale or simulated color vision deficiency.

monolens View part of your screen in grayscale or filtered to simulate color vision deficiency. Watch the demo on YouTube. Install with pip install mo

Hans Dembinski 31 Oct 11, 2022
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib

9 Sep 26, 2022
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
Visualization Library

CamViz Overview // Installation // Demos // License Overview CamViz is a visualization library developed by the TRI-ML team with the goal of providing

Toyota Research Institute - Machine Learning 67 Nov 24, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021