This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Overview

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans.

The approach builds on top of an arbitrary single-scan Panoptic Segmentation network and extends it to the temporal domain by associating instances across time using our Contrastive Aggregation network that leverages the point-wise features from the panoptic network.

Requirements

  • Install this package: go to the root directory of this repo and run:
pip3 install -U -e .

Data preparation

Download the SemanticKITTI dataset inside the directory data/kitti/. The directory structure should look like this:

./
└── data/
    └── kitti
        └── sequences
            ├── 00/           
            │   ├── velodyne/	
            |   |	├── 000000.bin
            |   |	├── 000001.bin
            |   |	└── ...
            │   └── labels/ 
            |       ├── 000000.label
            |       ├── 000001.label
            |       └── ...
            ├── 08/ # for validation
            ├── 11/ # 11-21 for testing
            └── 21/
                └── ...

Pretrained models

Reproducing the results

Run the evaluation script, which will compute the metrics for the validation set:

python evaluate_4dpanoptic.py --ckpt_ps path/to/panoptic_weights --ckpt_ag path/to/aggregation_weights 

Training

Create instances dataset

Since we use a frozen Panoptic Segmentation Network, to avoid running the forward pass during training, we save the instance predictions and the point features in advance running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights

This will create a directory in cont_assoc/data/instance_features with the same structure as Kitti but containing, for each sequence of the train set, npy files containing the instance points, labels and features for each scan.

Save validation predictions

To get the 4D Panoptic Segmentation performance for the validation step during training, we save the full predictions for the validation set (sequence 08) running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights --save_val_pred

This will create a directory in cont_assoc/data/validation_predictions with npy files for each scan of the validation sequence containing the semantic and instance predictions for each point.

Train Contrastive Aggregation Network

Once the instance dataset and the validation predictions are generated, we're ready to train the Contrastive Aggregation Network running:

python train_aggregation.py 

All the configurations are in the config/contrastive_instances.yaml file.

Citation

If you use this repo, please cite as :

@article{marcuzzi2022ral,
  author = {Rodrigo Marcuzzi and Lucas Nunes and Louis Wiesmann and Ignacio Vizzo and Jens Behley and Cyrill Stachniss},
  title = {{Contrastive Instance Association for 4D Panoptic Segmentation \\ using Sequences of 3D LiDAR Scans}},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year = 2022,
  volume={7},
  number={2},
  pages={1550-1557},
}

Acknowledgments

The Panoptic Segmentation Network used in this repo is DS-Net.

The loss function it's a modified version of SupContrast.

License

Copyright 2022, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022