This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Overview

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans.

The approach builds on top of an arbitrary single-scan Panoptic Segmentation network and extends it to the temporal domain by associating instances across time using our Contrastive Aggregation network that leverages the point-wise features from the panoptic network.

Requirements

  • Install this package: go to the root directory of this repo and run:
pip3 install -U -e .

Data preparation

Download the SemanticKITTI dataset inside the directory data/kitti/. The directory structure should look like this:

./
└── data/
    └── kitti
        └── sequences
            ├── 00/           
            │   ├── velodyne/	
            |   |	├── 000000.bin
            |   |	├── 000001.bin
            |   |	└── ...
            │   └── labels/ 
            |       ├── 000000.label
            |       ├── 000001.label
            |       └── ...
            ├── 08/ # for validation
            ├── 11/ # 11-21 for testing
            └── 21/
                └── ...

Pretrained models

Reproducing the results

Run the evaluation script, which will compute the metrics for the validation set:

python evaluate_4dpanoptic.py --ckpt_ps path/to/panoptic_weights --ckpt_ag path/to/aggregation_weights 

Training

Create instances dataset

Since we use a frozen Panoptic Segmentation Network, to avoid running the forward pass during training, we save the instance predictions and the point features in advance running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights

This will create a directory in cont_assoc/data/instance_features with the same structure as Kitti but containing, for each sequence of the train set, npy files containing the instance points, labels and features for each scan.

Save validation predictions

To get the 4D Panoptic Segmentation performance for the validation step during training, we save the full predictions for the validation set (sequence 08) running:

python save_panoptic_features.py --ckpt path/to/panoptic_weights --save_val_pred

This will create a directory in cont_assoc/data/validation_predictions with npy files for each scan of the validation sequence containing the semantic and instance predictions for each point.

Train Contrastive Aggregation Network

Once the instance dataset and the validation predictions are generated, we're ready to train the Contrastive Aggregation Network running:

python train_aggregation.py 

All the configurations are in the config/contrastive_instances.yaml file.

Citation

If you use this repo, please cite as :

@article{marcuzzi2022ral,
  author = {Rodrigo Marcuzzi and Lucas Nunes and Louis Wiesmann and Ignacio Vizzo and Jens Behley and Cyrill Stachniss},
  title = {{Contrastive Instance Association for 4D Panoptic Segmentation \\ using Sequences of 3D LiDAR Scans}},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year = 2022,
  volume={7},
  number={2},
  pages={1550-1557},
}

Acknowledgments

The Panoptic Segmentation Network used in this repo is DS-Net.

The loss function it's a modified version of SupContrast.

License

Copyright 2022, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
wlad 2 Dec 19, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023